Electromyography
Analysis and Recognition
for Human Device Interface

Engineering 090: Senior Design Project
Published May 2014

DaAviD NAHMIAS
dnahmiasl@gmail.com

Abstract

The desire to control and manipulate computers and human device
interfaces (HDI) in more natual ways has been sought after for some
time. This Engineering 090 project looks use hand movements and
motions to control an HDI. This is done through processing, analysis
and recognition of signals from surface electromyography (EMG)
sensors and an accelerometer and gyroscopes to control an HDI. The
HDI controlled in this project is a computer mouse and arrow keys on
a keyboard via the Makey-Makey. This project implements electronic
circuit design to filter the raw EMG signals to meaningful EMG
signals, digital signal processing methods to characterize the EMG
signals and machine learning techniques to classify the EMG signals
into hand gestures using Artificial Neural Networks (ANN). After-
wards, based on the evaluated hand gesture or movement, signals are
sent to a Makey-Makey to control the mouse and designated keys on
the keyboard. The system, after implementation, is able to recognize
with nearly no error four hand gestures within approximately an
eight of a second. This result allows for real time accurate control
of the desired HDI. This system in the future can be implemented
to control and manipulate any HDI that can be driven by General
Purpose In/Out (GPIO) signals. Finally, electromyography driven
HDIs have the potential to control more complicated systems such
as machines in hazardous areas or prosthetics, the possibilities are
endless.

Department of Engineering, Swarthmore College

mailto:dnahmias1@gmail.com

EMG Analysis and Recognition for HDI e David Nahmias

CONTENTS

(I _Introduction

2__Materials and Methodsl

2.1 General System Diagram|.o L
2.2 Acquisition of EMG Signall
221 Hardware Acquisition of EMGSignals|
.22 Software Acquisition of EMG Signals|

2.3 Analysisof EMG Signals|. oo o
231 EMG Software Architecture]
[2.3.2 EMG Signal Characteristics|

[24 Training and Application of Artificial Neural Networks|.
.41 Motivation and Theory of Artificial Neural Networks]
.42 Training Artificial Neural Networks for EMG Recognition]
.43 Applying Artificial Neural Networks for EMG signal Recognition]

.5 Integration of Accelerometer and Gyroscope| L.
[2.6 TIntegration of Human Device Interface]

B_Results|

PP (11X
p.I Complete List of Materials|.

[5.5.1 mainWeights|| array from MPBnnEval.c - From Results in Section[3.1]

i PBnnEval.c - From Resultsin SectionB.2]
[5.6.1 mainWeights|| array from MPBnnEval.c - From Results in Section[3.2]

[p.7 beaglebone _gpio.h| oo oo

E.S startuE.sk_‘q ..

List OF FIGURES

[l General System Diagram of Hardware].
2 Electrodes Used on Armband for EMG Acquisition]
B~ Armband Worn for EMG Aquisition]

b AC Couple Circuit Diagram|.,

EMG Analysis and Recognition for HDI e David Nahmias

o AC Couple Circuit Adapter Implementation| 6
[~ PCBCircuit Diagram| 7
8 b 1 8
O Dopulted PTB| ottt 9
[10" INAT28-Instrumentation Amplifier Circuit Diagram|. 10
[11 INAT28-Instrumentation Amplifier Pin Schematid 10
[12~ 60Hz Notch Filter Circuit Diagram|. 11
i i lted oo 12

(14 EMG Software Architecture Diagram| 15
[15 Four Channel EMG Signal from OpenHand] 17
[16 Four Channel EMG Signal from Closed Hand] 17
[17 Diagram of Neurons Used in ANN]. 18
[18 Single Neuron Example Froman ANN] 19
[I9 " Step Activation Function]. 19
20 Simple ANNS for Logic Problems| 20
1 Sigmoid Activation Function] 21
2 MBP Algorithm Diagram| 22
23" General ANN Topology: 16-20-4] 23
24 ANN Topology Applied for Four Gestures| 24
Software Architecture Integration for Accelerometer] 25

26 Four Hand Gestures Analyzed| 28
27 RMSE of ANN over 6335 Epochs] 28
8 ANN Output for First Initial Hand Gesture|. 29
9 ANN Output for Second Initial Hand Gesture| 29
0 ANN Output for Third Initial Hand Gesture| 30
Bl ANN Output for Fourth Initial Hand Gesture| 30
B2 RMSE of ANN over 63345 Epochs| 31
B3 ANN Output for First Initial Hand Gesture with More Training|. 32
[B4 ANN Output for Second Initial Hand Gesture with More Training| 32
5 ANN Output for Third Initial Hand Gesture with More Training] 33
B6 ANN Output for Fourth Initial Hand Gesture with More Training] 33

List OF TABLES

I Electrode Number to Name Map| 4
2 Electrodes to DB9 Connector Map| 5

to mmConnectorMap| 12
|4 BeagleBone Black to AD7689 for SPI PinMap| 13
[Hex Codes for EMG Signal Channels for SPIMap| 14
{6 BeagleBone Black to MPU6050 for "C Pin Map| 25
[7—Accelerometer Data from MPU6050 Register Map| 26
8 GPIOs for BeagleBone Black Board Memory Map| 27

EMG Analysis and Recognition for HDI e David Nahmias

1. INTRODUCTION

board and mouse. Some improvements to these systems have come through more ergonomic

designs of these devices and more interactive graphical user interfaces. However, despite all
these advances, using a mouse or keyboard do not come as natural human movements. The desire
to control computers more naturally through hand motions and gestures has been sought after for
some time. Ideally certain natural and intuitive motions and gestures could control features and
commands of the computer. Technologies such as touch screen devices, the Xbox Kinect and the
Leap Motion have come along as possible solutions to this problem. These technologies utilize
capacitive touch sensing, computer vision and infrared sensing, respectively, to recognize gestures
and positioning which can then be translated to computer commands such as a mouse click or
keyboard inputs.

THe user interface of a computer has stayed mostly constant since the inception of the key-

This project looks at an alternative method to determine motion and gesture recognition. This
project attempts to utilize electromyography (EMG) signals from the hand and arm to recognize
and interpret different hand and finger movements. EMG signals, after processing, have been
shown to be effective in differentiating between different finger movements and hand gestures. The
principle of EMG sensing is to measure voltage differences across various muscles and based on
these differences recognize hand gestures being executed. The difficultly in this task is acquiring
clear easily interpretable EMG signals to be used to recognize hand and figure movements. An
added challenge is that this acquisition and recognition of EMG signals must be done in real-time
in order to create an effective system for controlling computer computer commands. Furthermore,
in addition to the EMG electrodes placed on the arm, an accelerometer and gyroscope is integrated
to allow for recognition of more dynamic movements and hand gestures which allows for more
control. The human device interface (HDI) which will be integrated and controlled by this system
is the mouse and designated keys on a keyboard.

This project integrates many components together to obtain the overall desired goal. The center
piece of equipment, the BeagleBone Black board communicates with all the peripheral data acqui-
sition devices and HDI. Furthermore, it is also where the EMG signal analysis and recognition
software is run. Good communication between the AD7689 analog front end board, the MPU6050
accelerometer and gyroscope and the Makey-Makey are all essential. The raw EMG signals,
acquired via surface electromyography, are also processed using an AC couple, instrumentation
amplifiers and 60Hz notch filters in order to obtain clear EMG signals for the analog front end to
transfer to the BeagleBone Black board. In addition to the physical integration of the many compo-
nents, the integration of the EMG recognition software which utilizes Artificial Neural Networks
(ANN) to characterize the EMG signals, also integrates with the hardware and acquisition of data
via a multi-thread software architecture controlled by mutex locks. This software is driving force,
hosted on the BeagleBone Black board, that acquires the post-processed EMG input signals and
ultimately controls the desired HDI. All processing is designed to be run in real time because of
the necessary inter-device communications and desired real time control of the HDI.

EMG Analysis and Recognition for HDI e David Nahmias

2. MATERIALS AND METHODS

2.1 General System Diagram

Raw EMG
signal

Four AC Couples, Instrumentation Amplifiers
and 60Hz Notch Filters, for each channel, on PCBs

FilteredEMG
signal

MPUB050-Accelerometer
and Gyroscope

8-CH AD7689,
A/D Converter,
Analog Front End

SPI

- Makey-Makey

BeagleBone Black

Figure 1: General system diagram of hardware used

2.2 Acquisition of EMG Signal

The analysis and processing of the EMG signals is done on Texas Instrument’s BeagleBone Black
Board. This board uses an AM335x 1GHz ARM Cortex-A8 processor running the Angstrom with
eMMC flasher release date 2013-09-04 distribution of Linux.[15] Importantly for this project the
BeagleBone Black boasts two 46 pin headers, labeled P8 and P9, which are used for Serial Port
Interfacing (SPI), Inter-Integrated Circuit (I2C) and General-Purpose Input/Output (GPIO). The
pins on the BeagleBone Black are labeled using the notation P9_1, which would refer to pin 1 on
the P9 header. More technical information about the BeagleBone Black can be found online or
through the Bad to the Bone manual [1].

The analog front end device used is Analog Device’s AD7689.[7] This is a low cost, 16-bit 250
kSPS, 8-channel, isolated data acquisition system.[7] This allows us to acquire at maximum eight
channels of EMG signal data. From previous studies four has sometimes been enough and very
rarely have more than eight channels have been used thus this Analog to Digital (A/D) converter

EMG Analysis and Recognition for HDI e David Nahmias

is chosen.

These devices are used in conjunction to obtain and analyze the EMG signals.
EMG signals vary at a maximum of about 500Hz [2]. Thus, as per Shannon’s sampling theorem,
in order to ensure no loss of information in the signal, the EMG signals are sampled at a rate of

500Hz x 2 = 1000Hz.

This sampling rate is achieved by implementing a ‘sleep” in the data acquisition code.

The exact function used is .

The value of 850, which equates to a sleep time of 850us, is used since this was experimentally
found to produce a sampling rate very close to 1000Hz. Thus, in an attempt to have the system
analyze the EMG signals in real time, the EMG signals are analyzed in packets of an eight of
second of data. Since data packets of length of a power of 2 are desired for digital signal processing

purposes, 128 long packets of data are used to analyze a single hand gesture since $25 ~ .

2.2.1 Hardware Acquisition of EMG Signals

The EMG data is physically acquired through placing gold platted Grass electrodes filled with
Ten20 conductive paste on the arm. Eight electrodes are placed in pairs, two along the lateral side
of the forearm, two on the medial side of the forearm, two on the anterior side of the forearm and
two on the posterior side of the forearm. They are placed along the length of the arm so that they
measure the electric potential across the same muscle fibers. A ninth electrode is placed on the
elbow, where there is little muscle, as a ground reference.

An image of the arm band, which houses the electrodes, can be seen below:

Figure 2: Surface electrodes used for electromyography signal acquisition

EMG Analysis and Recognition for HDI e David Nahmias

When placing the eight electrodes on the arm, the third and fourth electrodes, labeled above, are
placed on the lateral side of the forearm. This should then place the buckle of the arm band on
the medial side of the arm and all other electrodes spread around the arm. The arm band is then
tightened until snug.

The ground electrode is then placed on the elbow.

A image of the arm band when placed on the arm can be seen below:

Figure 3: Armband being worn for electromyography signal acquisition

The eight electrodes are treated as four pairs and are paired as they go across the different muscle
fibers. The four electrode pairs are: 1 & 2,3 & 4,5 & 6 and 7 & 8.

The names used to label these electrodes can be seen in the following table:

Electrode Number | Electrode Name
Pair 1-A
Pair 1-B
Pair 2-A
Pair 2-B
Pair 3-A
Pair 3-B
Pair 4-A
Pair 4-B
GND

—_

O| ||| Q1| x| WIN

Table 1: Arm band electrode numbers to name mapping

EMG Analysis and Recognition for HDI e David Nahmias

The wires of the nine electrodes are connected to male DB9 connector via screw terminals as

shown below:

Figure 4: Male DB9 connector used for EMG electrodes from arm band

The electrodes from the arm band wire through the DB9 connector following the mapping in the

table below:

Electrode Name

Electrode Number

DB9 Terminal Number

Pair 1-A

1

1

Pair 1-B

Pair 2-A

Pair 2-B

Pair 3-A

Pair 3-B

Pair 4-A

Pair 4-B

GND

O| ||| Q1| x| W N

Q1| O = | 0| W| | N| &

Table 2: Arm band electrodes to male DB9 connector map

Each pair of the eight electrodes around the forearm is connected to the inputs of the four AC

couple circuits.

EMG Analysis and Recognition for HDI e David Nahmias

The circuit diagram for one of the AC couple circuits used is shown below:

Input Electrode A o + I I + O Output +
1M 1M
Ground Electrode O 0 2.5V
1 M0 1 M0
100 nF
Input Elecirode B o I I O Output -

Figure 5: AC couple circuit diagram

This is necessary since there is are constant differences in voltage across the electrode pairs that
are greater than the difference in voltage of the EMG signals. Along with the gain applied by
the instrumentation amplifiers the signals become saturated and the variation across the muscle
is no longer detectable. Because of this the AC couple circuit is used to eliminate any constant
difference across the electrode pairs so that only more meaningful differences are amplified and
clearer EMG signals can be detected. The EMG signals are AC coupled around the signal ground,
which is 2.5V, and the ground electrode on the elbow is connected to each of the four AC couple
circuits as shown in the diagram above.

These AC couple circuits are implemented and soldered onto a breadboard along with DB9
adapters. A female DB9 connector is used for input signal and the male DB9 connector is used for
the output. Both DB9 connectors utilize ribbon wire to connect to the AC couple circuits.

The implementation of this AC couple adapter can be seen below:

Figure 6: AC couple circuit adapter implementation

EMG Analysis and Recognition for HDI e David Nahmias

Note that the electrode wire colors and the ribbon wire colors are matched together. That is, the
EMG signals from electrode 1 is carried by a blue wire, as seen seen in Figure 2} is also carried
through the blue wires on the ribbon wires. The only exception to this is electrode 7, which uses a
purple wire while the ribbon wire carrying that EMG signal is black.

The output of the AC couple adapter circuit is connected to a female DB9 mounted on to a printed
circuit board (PCB) designed for this project. This PCB implements four high gain instrumentation
amplifiers and four 60Hz, the details of which are described in detail in this section.

The circuit diagram for the PCB can be seen below:

LTCEITICEN

LTCA0TICEN

RaZ

s
]
8|85
”I—“
RerE i 3
3
45|82 1z B
R AT =
82 |2z f;
A 1\
8|85 -
T g
T =
z |z
Je=]
3 5 i
gl [LIEIEIN
g . i % z gs
= SE1
3 HEIEIH

Figure 7: PCB circuit diagram implementing four instrumentation amplifiers and 60Hz Notch filters

EMG Analysis and Recognition for HDI e David Nahmias

The above circuit diagram is implemented on a PCB, for which layout can be seen below:

Figure 8: PCB layout implementing four instrumentation amplifiers and 60Hz Notch filters

EMG Analysis and Recognition for HDI e David Nahmias

Finally, we can see the PCB populated with all the circuit elements below:

*‘-llp‘ .'h—-ﬁvq |l|n?4::\

Figure 9: Populated PCB board populated implementing four instrumentation amplifiers and 60Hz Notch filters

On the right of the image is the DB9 input from the AC couple circuit and on the is left the filtered
EMG signal connected to the screw terminals of the AD7689. The 5V source from the AD7689 is
jumped to CH_7 terminal of the AD7689 which powers the PCB. The first GND terminal is used
as the OV on the PCB.

The first part of this PCB implements four INA128-high gain instrumentation amplifiers.

Each of the pairs of outputs of the AC couple circuits are connected to the inputs of the four
instrumentation amplifiers.[3] These instrumentation amplifiers have an adjustable gain, G, where
the gain equation is given by G = 1 + %.

EMG Analysis and Recognition for HDI e David Nahmias

The circuit diagram implemented by the instrumentation amplifier can be seen below:

‘u"ll'+
?? INA128:
. IMA128, INA129 Go1+ S0KQ
T o Owver-Violtage Rz
N Protection] "
VW't WA INA129:
: 40k 40k 40,440
— ! ' 25k 1) G=1+ =
A
= ' ° o,
= o
. A
o . 250l 1)
+ 3 Creer-\oltage '_\Iﬁl"llﬁl'lﬁ * ""ﬂ"'lﬁl"'ﬁ - O Ref
Vi O — 40k 40K

4
MOTE: (1) INA129: 24 7Tki} $
5
Ve

Figure 10: INA128-Instrumentation amplifier circuit diagram

The INA128 high gain instrumentation amplifier, with the circuit diagram shown above, follows
the pin out schematic shown below:

Top View
‘a__J
Rg| 1 8 |Rg
Vol 2 7 |V+
Vil 3 B |Vg
V- | 4 5 | Ref

Figure 11: INA128-Instrumentation amplifier pin schematic

An R¢ of two resistors, 5100 and 51k(} in parallel, for an equivalent Ry = ﬁ ~ 504.95 is
510 + 51000

used fora G = 1+ %2 ~ 100.

The second part of this PCB implements four 60Hz Notch filters via an integrated circuit and
precision resistors and capacitors.

10

EMG Analysis and Recognition for HDI e David Nahmias

Each of the outputs, Vp of these four instrumentation amplifiers, is wired through a 60Hz notch
filter, which can be seen below:

60Hz Motch

12 v
LTCBO7S ouT
Vin
-25Y
., R2|
"|". = .y
out | T _.l N
M NOTCH DEPTH = —60dE AT 60Hz, RTI

— SITEDTAIS
Figure 12: 60Hz Notch filter circuit diagram
Note that though the capacitor and resistor values labeled above would work in theory, for this
project:
o The 10MQ) resistors are replaced with 27k() resistors

e The 5M(Q) resistores are replaced with two 27k() resistors in parallel for an equivalent
resistance of 13.5k(2

e The 270pF capacitors are replaced with 0.1uF

o The 540pF capacitors are replaced with two 0.1y F in parallel for an equivalent capacitance
of 0.2uF

Note that the elements in parallel were unable to be soldered directly onto the printed circuit
board and so they were soldered to each other before placed onto the printed circuit board, which
can be seen in Figure 9]

Given these values we see that the frequency, fy, we would notch is:

fo e 1
07 27 x 27kQ X 0.1uF

= 58.944Hz,

which is equivalent to the values used in the schematic above,

fo— 1
0™ 271 x 10MQ x 27pF

= 58.944Hz.

Finally, a 10kQ) resistor is used for R1 and R2 which results in

10kQ)
Vout = (1 + ka) "IN =2 VINy

11

EMG Analysis and Recognition for HDI e David Nahmias

which produces a gain of 2 in the system.

The four notch filters are implemented on the printed circuit board via the LTC6079CGN, an
integrated circuit [6], which can be seen below:

TOP VIEW
OUTA [1] 16] ouTD
—INA EJ:IE/\J L@:LE -IND
+INA [3] [14] +IND
vt [4] 13] v~
+INB [5] 3> 12] +INC
~INB IEFT ﬁjtﬂl —INC
0UTB [7] 10] ouTC
NG [8] (9] NG
GN PACKAGE

16-LEAD PLASTIC S50P

Figure 13: LTC6079CGN pin Schematic used for 60Hz Notch filter

Note that on the printed circuit board, the original wiring for the 0V and 5V, both coming from
the AD7689 analog front end, were switched for the inputs to the LTC6079CGN. This is corrected
by manually altering the printed circuit board, which can be seen in Figure [§] with the red wire
jumped across the PCB.

From implementing this 60Hz Notch filter and the previously analyzed instrumentation am-
plifier, each of the four EMG signals are being fed through a gain of 100 x 2 = 200 while being
filtered before they are connected to the AD7689. Each of the four Vj from the notch filters is then
wired to CH_0 through CH_3 of the AD7689.

The mapping of the PCB to AD7689 screw terminal can be seen in the following table:

Signal Name | PCB Pin Number AD7689
EMG Pair 1 1 CH_O0
EMG Pair 2 2 CH_1
EMG Pair 3 3 CH_2
EMG Pair 4 4 CH_3
GND (0V) 5 Top/First GND terminal
Not Connected 6 Bottom /Second GND terminal
Not Connected 7 CH_4
Not Connected 8 CH_5
Not Connected 9 CH_6
Power (5V) 10 CH_7

Table 3: Pin mapping for PCB to AD7689 screw terminals

12

EMG Analysis and Recognition for HDI e David Nahmias

The filtered EMG signals are then read from the AD7689 by the BeagleBone black through Serial
Port Interface (SPI) protocol.

To implement SPI between the BeagleBone Black and the AD7689 the following pin mapping is
used:

Connection Name | BeagleBone | AD7689
GND P9_1 Pin 5
CLK P9_22 Pin 4
MOSI P9_18 Pin 3
MISO P9_21 Pin 2
CNV P9_17 Pin 1

Table 4: Pin out mapping to AD7689 for SPI.

This mapping is determined by the SPI0 pin out on the BeagleBone [1] and the SPI pin out on the
AD7689 in the schematic file. [7]

A complete list of all materials used in this section, including all circuit elements can be seen in

Appendix

2.2.2 Software Acquisition of EMG Signals

To connect to the BeagleBone Black via terminal the command:

ssh -X root@192.168.7.2 |.
In order to use SPI with the BeagleBone Black instructions online were followed in order to obtain
the correct files on the BeagleBone which do not come pre-installed.[12]
For this project SPI0, which uses the file spidev2.0, is used. The bash script, which can be found in
Appendix is run on start-up, via crontab:

‘ @reboot sh startup.sh ‘

to re-enable the spidev2.0 file every time.
Once this is enabled it can be accessed in C using the command

int fd2 = open("/dev/spidev2.0",0_RDWR);
after which the correct SPI procedure is followed in order to communicate with the AD7689.
The read /write after conversion (RAC) mode without busy indicator [7] is used for this project.
The 16-bit configuration register is determined by the following desired modes:

e 1-Overwrite contents of register
e 111-Unipolar, INx reference to GND
e Channels:

— 000-Channel INO
— 001-Channel IN1
— 010-Channel IN2
— 011-Channel IN3

e 0-1/4 of bandwidth

13

EMG Analysis and Recognition for HDI e David Nahmias

o 001-Internal reference, REF=4.096V output, temperature enabled; 00-Disable sequencer
e 1-Do not read back contents of configuration

e 00-The two least significant bits are automatically set to be 0 since only 14 bits are needed
for configuration but 16 bits need to be sent.

Thus all together we see:
e 111 0000 0010 0100-Channel INO
e 111 0010 0010 0100-Channel IN1
e 111 0100 0010 0100-Channel IN2
e 111 0110 0010 0100-Channel IN3

Thus, as seen in the main code the hex codes transmitted for SPI are:

Channel Name on PCB | Channel Name for SPI | Variable Name | Hex Code Transmitted
CH_0 INO tx0[1] 0xF024
CH_1 IN1 tx1[1] 0xF224
CH_2 IN2 tx2[1] 0xF424
CH_3 IN3 tx3[1] 0xF264

Table 5: Hex codes for EMG signal channels for SPI mapping

Finally, note that the data is sent back after two clock cycles when using RAC mode without
busy indicator. Thus in order to obtain the data in the correct order the channels are called in the
following order: CH2, CH3, CHO, CH1.
The SPI communication is then executed via standard C SPI protocol using the ‘struct spi_ioc_transfer’
and ‘ioctl” function, which for the first channel is:
struct spi_ioc_transfer tr0 = {
.tx_buf = (unsigned long)tx0,
1x_buf = (signed long)rx0,
Jlen = 2*ARRAY_SIZE(tx0),
.delay_usecs = delay,
.speed_hz = speed,
bits_per_word = bit,
b
and
ret = ioctl(fd2, SPI_IOC_MESSAGE(1), &tr0);
The full details for using SPI with the AD7689 can be found in the AD7689 datasheet.[7]
Since the SPI for each of the four channels is done serially, in order to acquire the data from four
channels 128 times 4 x 128 = 512 SPI transfer calls are done for every hand gesture. This data is
stored in a 4x128 array until this all 512 SPI transfers are completed after which the data is ready
for processing.
The implementation of this code can be seen in the data acquisition thread named ‘SPIdata_thread’
of the main code in Appendix [5.2]and training code in Appendix

14

EMG Analysis and Recognition for HDI e David Nahmias

2.3 Analysis of EMG Signals

2.3.1 EMG Software Architecture

Multi-Thread Software Architecture

Data Analysis and

Data Acquisition Thread
Recognition Thread

Initially given Lock Acquire|Lock

Acquire|Lock >| Copy 4x128 data array
EMG Four EMG Signal Acquired

—3 from Analog Front End via Release|Lock
signals || spy, repeated 128 times. ¥

Analyze into 1x16
characteristics array

W
Recognize via Neural
Network between
possible gestures

Store Datain 4x128 array

Release|Lock .I,
Maximum activates GPIO
mapped GPIO >

Figure 14: EMG software architecture diagram

In order for there to be very little to no lapse in EMG data a multi-threaded program is imple-
mented. When the program is first run, the data acquisition thread acquires the first 128 readings
of the four channels and then transfers them over to the main thread using a mutex lock to ensure
the data will not be corrupted as the threads share this resource. Once the transfer is complete,
main thread begins processing the first set of data while the data acquisition thread collects the
second set of 128 readings. Thus, the multi-thread process allows for the analysis of the previously
collected data while data is collected for the future analysis. The mutex lock is released by C the
command

’ pthread_mutex_unlock(&(p->lock1)); ‘

and it can then be requested and then acquired, when available and released by the other thread,
by the C command

’ pthread_mutex_lock(&(p->lock1)); ‘

Both the main code in Appendix[p.2Jand training code in Appendix [.3]implement this design. A
third independent, not diagrammed here, thread is further implemented to acquire and process
the data from the accelerometer and gyroscope independently from the EMG analysis and is
described in Section 2.5

Three external files are used in addition to the main, and are included via

Finclude]

15

EMG Analysis and Recognition for HDI e David Nahmias

which are used for GPIO memory mapping, in Appendix a library of auxiliary and char-
acteristic evaluation functions, in Appendix [5.4{and the neural network evaluation function, in
Appendix

Finally, this code is written with processing speed and simplicity in mind. Thus, the fewest
possible inclusion of external libraries are used. Only standard C libraries, already pre-installed
on the linux distribution, are used in the code with no external third party libraries downloaded.

2.3.2 EMG Signal Characteristics

The EMG signals are analyzed one channel, or 1x128 long array of data, at a time. Each channel
is attributed four characteristics show below. These calculations together produce an array of 16
values which represent four characteristics from the four channels thus reducing the dimensionality
of the data from 512 to 16.

The mean of the EMG signal subtracted from the signal so that its overall amplitude is not
considered but rather the amplitude of its changes around the mean. Thus the vectors being
analyzed are)_(',- =)_fi - mean()_i) withi=0,1,...,N.

Thus from this point on X refers to the data vector with mean zero. Furthermore, N refers to the
number of elements in the vector which in this case is 128.

e Variance of High and Low Frequencies.
A moving average Finite Impulse Response filter designed with the Parks-McClellan algo-
rithm is used.

— Using in MATLAB firpm(6,[0 0.4 0.6 11,[0 0 1 1]),
Filteryg, = [0.1195,—0.0001, —0.3133, 0.4998, —0.3133, —0.0001, 0.1195]

- Using in MATLAB firpm(6,[0 0.4 0.6 1],[1 1 0 0]),
Filter}o,, = [—0.1195,0.0001, 0.3133, 0.5002, 0.3133,0.0001, —0.1195]

. . 6
Variance of High and Low Frequencies: Var(XFisered) Where Xrijereq; = Y. Xiyj X Filtery;gy /low,
j=0
. L N-1 .
withi =0,1,...,N—7and Var(X) = ¥ (x; — %)%, where ¥ = mean(X)
i=0

o Number of Slope Changes: Number of times |dif f(sign(diff(X)))| = 2, where dif f(X) =
Xi — Xi+1 withi:O,l,...,N—2

e Number of Zero (or Mean) Crossings: Number of times X; x Xz’+1 < 0 (only counting once
for series of zeros) withi =0,1,...,N — 1.

These operations are called in the main function once the data is transferred over but are imple-
mented in an auxiliary code, classificationFunctions.c, which can be seen in Appendix

16

EMG Analysis and Recognition for HDI e David Nahmias

These characteristics are useful for looking at the EMG signals because the visible variation that
occurs between different hand gestures such as an open versus a closed hand can be seen below:

Multi Channel Graph

)\J LJA“[M,., w 4{ '”/’i’%ﬁ?' -:b'h (g% ‘ﬁ.ﬁ‘:li I’l"#* uu,} Q‘Uﬂw!”dﬂ b M»M

1 1 1
0.04 0.05 0.06
Time(s)

Figure 15: Four Channel signal when hand is open and relaxed

Multi Channel Graph

]

A

J'|I .rh*{»'-l I|".t'lI -

| i *ﬁwf UIH'I T lﬁ'l '||| JI
|-

¥R T

o
IIr

o i I I'
2 2.420-[FAE ypf o i" r ¥ r|
= ural |. I 4"” .rlfil. |J.l e
-_-:.".‘_I.-_m(]— |I lﬂ;\\. || || n M!l‘ |p'|‘ &Iji-rl”" k‘ | “ L |‘ ||r||
| J
|I |
]
|
]

{ HII*L'M{ || ””II
*n l;.l, mql h . flu.' L
lf"’l"l\r IH H WW1 I. rlﬂ
|/

1
'
i

i
f

!
.J,

r

Time(s)

Figure 16: Four Channel signal when hand is closed and muscles are contracted

17

CHO
CH1L
CH2
CH3

Display Format

RAW Data

@ Voltage(V)
cHo 1M
cHl
cHz
cs I

Display Format

RAW Data
@ Voltage(V)

EMG Analysis and Recognition for HDI e David Nahmias

2.4 Training and Application of Artificial Neural Networks

Because of the need to evaluate the data through an Artificial Neural Network (ANN) in C
several option were considered and the Multiple Back Propagation software was decided upon.
Multiple Back Propagation is used because of its ability to produce a C function which evaluates a
new input on the trained ANN using only the math.h library which is already available on the
BeagleBone Black board. Currently Multiple Back Propagation is supported for Windows OS and
more information about the software can be found online. [17]

2.4.1 Motivation and Theory of Artificial Neural Networks

ANNSs are a machine learning technique which are commonly used as a method of pattern
recognition. Specifically, they are trained using a supervised learning algorithm. This means that
the training set used to initialize the ANN has the corresponding outputs known for the ANN
to compare its outputs to. The ANN trains until it has minimized the root mean squared error
(RMSE) between its outputs and the known outputs of the training set.

A single neuron in an ANN follows the structure shown below:

Weights of |
Meuron

Activation
Function

Net; Input

Output of j*

{p > Meuron

|

6;, Threshold
of j* Neuron

of j* Neuron

Figure 17: Diagram of neurons used in applied ANN

The inputs to the activation function, Netj is defined as

n
Netj = Z% Input; X wj
1=

for the jth neuron.

18

EMG Analysis and Recognition for HDI e David Nahmias

As an example, for simplicity, the following single input neuron is considered below:

INPUT

1.5 (Weight)

l

(Threshold)

QUTPUT

Figure 18: Single neuron example with weight=1.5 and threshold=3 from an ANN

In this case, as shown in Figure |17} the input is multiplied by the weights of the neuron and then
all inputs x weights of the single neuron are summed together. If that value exceeds the value of
the threshold then the neuron is activated and the output is 1. Otherwise, if the sum of all the
inputs x weights is less than the threshold then the neuron is not activated and the output is 0.
The threshold used here is 3 and thus an input> 2 would be needed in order to activate this neuron.

The activation function used in this example is a step function, which produces the binary
0 or 1 outputs and can be seen below:

-0.5 0 0.5

Figure 19: Step activation function used in simple neuron

19

EMG Analysis and Recognition for HDI e David Nahmias

The step function is defined by:

0 :t<0
(Pstep(t>_{ 1 :t>0

with t the Net; input.

ANNs using these types of neurons can be applied to simple logic problems as seen below:

A B | AND A B|OR A B | XOR
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

0 1 1] 1 1 O

o] o~ 0 1 0 1
Q0 Q) ¢

v/ 'y

e ;

= O

Figure 20: Simple ANNs applied for solving logic problems, noting linear separability

AND and OR are both simple and can be solve using a single layered ANN since the problem’s
solutions are linearly separable. However, XOR, exclusive OR, is not linearly separable and thus
requires a hidden layer with two hidden neurons to solve the problem. For this reason the topology
of the ANNs used are multi-layered and use a hidden layer with many hidden neurons.

20

EMG Analysis and Recognition for HDI e David Nahmias

Furthermore, unlike the neurons used in these examples that use a step function as their activation
functions, the neurons used in the ANNs applied in this project utilize the Sigmoid function as
their activation functions, shown below:

-0.5 0 0.5

Figure 21: Sigmoid activation function used

This function is defined by:
1
C14e P
with B as the slope parameter and f the Net; input.
This function is widely used when implementing the back propagation algorithm because it is
easy to differentiate since
when B # 1,

Psigmoid (B, t)

1
)= —
o) = T rem

and so 4
3 ?(B:t) = Ble(B, 1)1 — 9(B,1)]]
but when B = 1, which is more commonly used,

1

P = T

and so 4

3?1 =Ml —e(t)]
This activation function produces outputs ranging from 0 to 1, showing the confidence of the
ANN s evaluation of the inputs with 1 implying that the ANN strongly believes that output to
be the correct one. Finally, with these easily computable derivatives, using the Sigmoid function
dramatically reduces the computation involved while training since the derivative of the activation
is used in the back propagation training algorithm.

21

EMG Analysis and Recognition for HDI e David Nahmias

The training process for ANNSs is rather complicated, however, the main method of training used
in this project is an algorithm called back propagation, where the name of the software comes
from. This algorithm initially randomizes the weights and thresholds of the ANN. The algorithm
then updates the weights and thresholds of the ANN depending on the error between the output
of the ANN and the known outputs of the training set. The goal is to weigh and threshold the
inputs of the training set to evaluate the correct outputs, as compared to the training set. This
process is done iteratively, with each iteration known as Epochs, until the desired minimum RMSE
level or maximum allowable Epochs is reached.

A flow of the Back Propagation algorithm is diagrammed below:

Adjust
Weights

Inputs (16) Artificial Neural | Qutputs
—_—

Network (Number _ >
of Hand
Gestures) + | known
Outputs from
Training Set

Figure 22: Multiple Back Propagation algorithm diagram

The properties and theory of the ANNSs application and training algorithms are further described
by the Multiple Back Propagation program’s underlying papers and tutorial.[17]

2.4.2 Training Artificial Neural Networks for EMG Recognition

Before the ANN can be trained the training set data is acquired. Through the "trainNNGesture.c’
code, the number of desired hand gestures to be recognized is edited. Once this is done the code
is compiled and run.

The training set is then collected by acquiring the EMG data, processing it and then storing it
in .txt files in the data sub-folder, which is created prior to running this program. 500 sets of 16
characteristics for each of four hand gestures is collected and stored in .txt files. Furthermore, in
the case of four hand gestures, for each set of 16 characteristics, the known output of the data
is stored in the form of three Os and a 1, with the 1 representing the correct hand gesture. For
example each of the 500 sets of 16 characteristics for the first hand gesture would be followed by
‘100 0.” Each hand gesture is to be held for approximately 1.5 minutes as the data is accumulated
after which there is a three second pause when the next hand gesture must be made and held for
approximately 1.5 minutes.

22

EMG Analysis and Recognition for HDI e David Nahmias

Once the program is done, a single .dat file, of all hand gesture data is created by running in the
command line:

cat *.txt > allData.dat
within the data sub-folder.
The hand gesture data is initially stored in different files for debugging and analysis purposes.
This .dat file can then be loaded into the Multiple Back Propagation program for training.
The topology of the Artificial Neural Network is given by 16-HN-4, where HN is the number of
hidden neurons in the hidden layer and is open for testing. The first number is the number of
input neurons, which are the four characteristics for each of the four channels, 16 and the last
number is the number of hands gestures being recognized,4. The HN value must make it so that
the ANN is able to train and later recognize new data. An HN value that is too low risks not being
able to reach the required accuracy of the ANN output while an HN value too high may over-train
the ANN and may only recognize accurately data from the training set and not new data which
will vary slightly from the training set. For this project, through testing, it is determined that
HN = 20 is the fewest number of hidden neurons required to reliably produce the desired accuracy.

The topology of such an ANN is shown below:

s 2oL A

e Rt
; ;A;:;:.: N i——
B B 4
b A
L

Y
N

1!'1-'3‘9-';}’

AT éﬁ%“‘i&p
e
VLT L7 ﬁ.h—...__ '

Figure 23: ANN topology for 16 inputs, 20 hidden neurons, and 4 outputs

In the figure above, the square nodes represent the inputs, the circle nodes each represents the
single neuron diagram seen in Figure [17|and the small triangles are biases that are used when
updating and evaluating the ANN to vary the input values randomly.

23

EMG Analysis and Recognition for HDI e David Nahmias

Once the data is collected and placed into the .dat file, it is loaded into the Multiple Back
Propagation software and trained after which the C code can be downloaded as ‘"MBPnnEval.c,’
which can be seen in Appendix[5.5] This file is then copied into the working directory of the main
run file.

2.4.3 Applying Artificial Neural Networks for EMG signal Recognition

Data of similar size and characteristics that is used to initially train the ANN must be applied
when using the ANN in order to produce accurate results. When implementing the trained ANN
the same features will be extracted from the ‘live” signals and these features will be run through
the ANN which will identify which motion the features came from.

In applying the ANN code from Multiple Back Propagation, the only things necessary are an
input vector of the same type of 16 classifiers used to train the Artificial Neural Network and a
pre-allocated array with length depending on number of hand gestures being recognized. Multiple
Back Propagation’s code takes care of the rest and applies the weights of each neuron in the
network thus computing probabilities for each hand gesture, with values ranging from 0 to 1. The
highest valued element in the array is the hand gesture believed to be executed.

The topology and sample output of the ANN used to recognize the four hand gestures can
be seen below:

0.00
16 EMG 0.05
Characteristics)
as Inputs

0.80

0.15

Figure 24: ANN topology applied for initial four gestures with sample outputs

With these sample outputs, the ANN is indicating that the third hand gesture is being executed.

24

EMG Analysis and Recognition for HDI e David Nahmias

2.5 Integration of Accelerometer and Gyroscope

Given the application of this project, only the accelerometer data is acquired and analyzed.
To integrate the accelerometer and gyroscope through I?C a third independent thread within the
main code is used.

The software architecture diagram with the additional thread can be seen below:

Multi-Thread Software Architecture Additional Thread
— Data Analysis and
Data Acquisition Thread ¥s
g th sirellock | Recognition Thread Accelerometer Thread
Initially given Lock
Acquire Lock :i Copy 4x128 data arra‘,fl
gmG || Four EMG Signal Acquired | Acquire data vialiC I
=3 from Analog Front End via Release|Lock
Signals SPI, repeated 128 times.
Analyze into 1x16 «
fhararteriitksarra-,r | Calculate X, ¥, Z Angles |

Store Data in 4x128 array I Recognize via Neural

| Metwork between

h 4

possible gestures Angle u:l:fl'uanges activate
mapped GPIO
Release|Lock 1
Maximum activates GPIO
mapped GPIO >

Figure 25: Software integration diagram of integration for accelerometer

This third independent thread is used so to not interfere with the already existing EMG data
acquisition and analysis software timing. The i2c-1 port is used on the beaglebone for this I>C
protocol which is done in C by using the commands:

char *filename = "/dev/i2c-1";
file = open(filename, O_RDWR);

Furthermore, on the beaglebone, the MPU6050 when connected via I2C is at the address 0x68,
determined via the terminal shell command:

[13]

which is subsequently set in C by the command:

‘ unsigned char addr = 0x68;

To implement I°C between the BeagleBone Black and the MPU6050 the following pin mapping is
used:

Connection Name | BeagleBone | MPU6050
VDD(3.3V) P9_3 VDD(Pin 1)
GND P9_2 GND(Pin 2)

SCL PIN19-9 SCL(Pin 5)

SDA PIN20-9 SDA(Pin 6)
VIO(3.3V) PIN4-9 VIO(Pin 7)

Table 6: Pin out mapping to MPU6050 for >C

25

EMG Analysis and Recognition for HDI e David Nahmias

This mapping is determined by the I>C pin out on the BeagleBone [1] and the pin out labeled
directly on the MPU6050 and can also be found in the datasheet [10].

From the register mapping [8] the board is set ON by setting the 0x6B bit low, to 0x00, which is
done in C by the following commands:

ioctl(file, I2C_SLAVE, addr);
wBufOn[0] = 0x6b;
wBufOn[1] = 0x00;
write(file, wBufOn,2);

Other than this register, all other default setting are kept the same and no other registers are set to
any values via software.

The register addresses for the accelerometer data are found on the 0x3B to 0x40 registers.

The following table from the MPU6050 register map shows the accelerometer data registers:

Term Hex Register Map on MPU6050
ACCEL_XOUT[15:8] 0x3B
ACCEL_XOUT[7:0] 0x3C
ACCEL_YOUT[15:8] 0x3D
ACCEL_YOUT[7:0] 0x3E
ACCEL_ZOUT[15:8] 0x3F
ACCEL_ZOUT[7:0] 0x40

Table 7: Accelerometer raw data register map in hex code on the MPU6050

The register to be read is initially set to 0x3B, the eight most significant bits of ACCEL_XOUT. The
I2C protocol can then be run in burst mode, reading the next five sequential registers without
having to reset the register to be read.

This is done through the following commands in C:

ioctl(file,I2C_SLAVE, addr);
wBuf[0] = 0x3b;
write(file,wBuf,1);

ioctl(file,]2C_SLAVE, addr);
Note that each register is only contains 8 bits though each of the accelerometer values are 16 bits
long. Thus, when reading the accelerometer data, the [15:8] bits are left shifted by 8 bits and then
added to the [7:0] bits of the same accelerometer axis.

This is done, for example for the x-axis acceleration, in C, through the following commands:
read(file,rBuf,1);

accel_x = rBuf[0];
read(file,rBuf,1);

accel_x = (accel_x«8)+rBuf[0];

In order to interpret the values from the MPU6050, which is returning raw data, as angles
we let the raw 16 bit x,y,z data be defined as Ay, Ay, A; respectively and calculate the angles
using the following equations:

Ax
p = arctan | ————
\/ A%+ A2

26

EMG Analysis and Recognition for HDI e David Nahmias

Ay
= arctan | ————
¢ (VAZ+ A§>

A%+ A}
0 = arctan | ———

Az

with p, the Pitch, is defined as the angle of the X-axis relative to ground, ¢, the Roll, is defined as
the angle of the Y-axis relative to ground, and 6, not quite the Yaw, is defined as the angle of the
Z-axis relative to the ground, because of the effect of gravity.

2.6 Integration of Human Device Interface

After characterizing and classifying the EMG signal via the ANN, General Purpose In/Out (GPIO)
pins are used to control the HDI. In this project the HDI being controlled is a computer mouse and
arrow keys and space bar on a keyboard. This is done by activating, setting high, the appropriate
GPIOs as a specific hand movement or gesture is executed. The GPIO signals are then sent to the
Makey-Makey board.

The Makey-Makey board, when connected via USB to the computer, controls the computer mouse
and certain set keys of the keyboard, including the arrow keys and space bar, as the appropriate
pins are activated. Pins on the Makey-Makey are activated when a change in voltage, relative to a
common ground, is detected. Thus, when the appropriate hand gesture is recognized or hand
movement from the accelerometer and gyroscope is executed a set GPIO pin can be activated thus
executing a computer command via the Makey-Makey.

The GPIO pins are mapped via memory location for speed and reliability. The starting address for
Mode 1 for all pins on the BeagleBone Black’s pin header is 0x4804C000. The GPIO pins used are
then left shifted by different amounts as directed on the pin out mapping of the BeagleBone Black.

The GPIO mapping for the BeagleBone Black can be seen in the table below:

GPIO Location on Pin Header | GPIO Name | Left Shift Memory Location
P8_11 GPIO1_13 13
P8_12 GPIO1_12 12
P8_15 GPIO1_15 15
P8_16 GPIO1_14 14
P8_26 GPIO1_29 29
P9_12 GPIO1_28 28
P9_14 GPIO1_18 18
P9_15 GPIO1_16 16
P9_16 GPIO1_19 19
P9_23 GPIO1_23 23

Table 8: GPIO memory mapping for the BeagleBone Black as implemented in C

These GPIO memory locations are initialized in ‘beaglebone_gpio.h’, which can be seen in
Appendix [5.7|and implemented in the main code which can be seen in Appendix

Finally, note that in order to implement these GPIOs onto the Makey-Makey, P8_1, an available
GND pin on the BeagleBone Black board, must be connected to the ground plane of the Makey-
Makey. For more information on the Makey-Makey see the website and documentation.[16]

27

EMG Analysis and Recognition for HDI e David Nahmias

3. REsuLTS

The system is implemented analyzing the following four hand gestures shown below:

f
WA/ o L | \|

\ f ‘? (' ‘\ B
Figure 26: Initial set of four hand gestures analyzed for recognition
The hand gestures above, from left to right are referred to as the first hand gesture or open hand,

the second hand gesture or closed hand, the third hand gesture or spiderman hand and the fourth
hand gesture or three hand.

These hand gestures are chosen since they provide a good spectrum of some hand gestures
being vastly different from one another, such as the open and closed hands, while some hand
gestures are similar to one another, such as the spiderman hand and the three hand. Thus, it is
possible to see how well the system does in recognizing and differentiating hand gestures that are
vastly different versus hand gestures that are similar in their muscle activation.

3.1 Results with Four Hand Gestures

For the training set acquired via the four hand gestures show above and using the ANN topology
shown in Figure

The plot below shows the RMSE as it varies with the number of Epochs performed:

0.147%1

011963

0.0917831

0.0638:

0.0360:
] 683 1392 209 2300 3504 4208 912 5616 6320

Figure 27: RMSE of the ANN after 6335 Epochs over approximately 10 minutes

28

EMG Analysis and Recognition for HDI e David Nahmias

From this test, the minimum obtained RMSE~ 0.046, from 6335 Epochs, which takes approxi-
mately 10 minutes using the Multiple Back Propagation software. The C file produced by this test

can be seen in Appendix

For the four hand gestures, the output and accuracy of this ANN can be seen below in the
four plots. These plots indicate in black the known outputs of the training set and in red the

believed outputs of the ANN.

\l/

-

[oumute

H T T T lv””‘”ﬂ‘"

Desred Output
Network Output

R

i
1l

[]

i

23 35

&7

E3

)

1555

77

Figure 28: ANN output for initial set of four hand gestures analyzed for recognition-First hand gesture: Open hand

[T

Desred Qutput
Network Output

R T

EY

Ll

FITAA

v

B 5

67

E

163

W
U

2000

Figure 29: ANN output for initial set of four hand gestures analyzed for recognition-Second hand gesture: Closed hand

29

EMG Analysis and Recognition for HDI e David Nahmias

\” &

-

Output £3
1

| g

I \H‘\I

Desred Qutput
Network Qutputy

—
N TR DR I NI

B [1333 1555 el 200

m

Figure 30: ANN output for initial set of four hand gestures analyzed for recognition-Third hand gesture: Spiderman
hand

\lf

Desred Qutput

‘ | I

Juhm .JM ‘

s &7 e

B

Figure 31: ANN output for initial set of four hand gestures analyzed for recognition-Fourth hand gesture: Three hand

From these plots the first and second hand gestures are able to be recognized with a very high
degree of accuracy. However, as expected, the third and fourth hand gestures are not differentiated
as well.

Overall, the system is able to reliably recognize the first three hand gestures with nearly 90%
accuracy and at a very high response rate. In fact, between the motion of performing the first and
second hand the gestures the system would often identify the third or fourth hand gesture being
performed which in many cases was most likely accurate.

30

EMG Analysis and Recognition for HDI e David Nahmias

However, the system had a high error rate with recognizing the fourth hand gesture and often,
about 30-40% of the time, classified it as the third hand gesture.

Because of this error a method for controlling and increases the accuracy of the HDI control, and
slowing the system down, is to only activate a GPIO if the same hand gesture has been detected
more than two times in a row. Using this method the system is nearly 100% accurate in identifying
the correct hand gestures as it is very rare for the system to make an error, let alone the same error,
repeatedly.

Furthermore, this ANN is able to be used repeatedly and accurately on different days after the
ANN is trained and is transferable to others with similar arm size.

3.2 Results with Four Hand Gestures with More Training

The same training set using the four hand gestures show above and using the ANN topology
shown in Figure [24] can be applied to more training.

The plot below shows the RMSE as it varies with the number of Epochs performed:

0.2623

0234541

0.206

0.1

0.15122;

0.1

0.0956; \

0.06730:

0.040129:

0,01
o 6912 13852 20892 23032 35072 42112 2152 56192 63232

Figure 32: RMSE of the ANN after 63345 Epochs over approximately 90 minutes

From this test, the minimum obtained RMSE~ 0.023, from 63345 Epochs, which takes approxi-
mately 90 minutes using the Multiple Back Propagation software. Note approximately ten times
more Epochs are performed and the RMSE is approximately halved relative to the previous test.
The C file produced by this test can be seen in Appendix

For the four hand gestures, the output and accuracy of the neural network can be seen be-

low in the four plots. These plots indicate in black the known outputs of the training set and in
red the believed outputs of the ANN.

31

EMG Analysis and Recognition for HDI e David Nahmias

Desred Output
Network Output|

2

ES s &7 £

1333 1555 77 EC

Figure 33: ANN output for initial set of four hand gestures analyzed for recognition with more training-First hand
gesture: Open hand

Besred Qutput
Network Output|

Ex

H 2 5 7 E3 un [1555 77

Figure 34: ANN output for initial set of four hand gestures analyzed for recognition with more training-Second hand
gesture: Closed hand

32

EMG Analysis and Recognition for HDI e David Nahmias

Besiced Output]
Netuork Output]

s

0.

o

o.

B

T 2 5 67 £ o 13 1555 w7

Figure 35: ANN output for initial set of four hand gestures analyzed for recognition with more training-Third hand
gesture: Spiderman hand

Desred Quiput
ehiork Oua

2

B s &7 £ 11) 1555 ez

Figure 36: ANN output for initial set of four hand gestures analyzed for recognition with more training-Fourth hand
gesture: Three hand

From these plots the hand gestures are able to be recognized with an extremely high degree of
accuracy while the only significant errors are between the third and fourth hand gestures, which
has decreased significantly relative to the previous test.

The system, under the same conditions as when it is trained, is able to reliably recognize the hand
gestures with nearly 100% accuracy and at a very high response rate.

However, through testing it is determined that this ANN’s ability to recognize EMG signals

33

EMG Analysis and Recognition for HDI e David Nahmias

that vary slightly from the original training set diminishes very quickly as slight changes and
variations are added to the system. If applied after the arm band is removed and replaced on the
arm the accuracy does diminish slightly. Furthermore, it does very poorly on others arms only
characterizing the first and second hand gestures accurately and many times characterizing the
third or fourth hand gestures as the second hand gesture.

Unlike the responses of the ANN of the previous test, which gave some weight to the other
incorrect hand gestures, the responses of this ANN tend to be very close to 0 or 1 since it be-
lieves it is very confident about its recognition. Thus, when used immediately after training this
system is nearly 100% accurate. However, its performance decreases as various factors are changed.

For these reasons the ‘"MBPnnEval.c’ used, which can be seen in Appendix is the C file
produced from the first test with a minimum RMSE~ 0.046, training the data with 6335 Epochs
over approximately 10 minutes since it is found to produce the more repeatable results.

4. DIsCcUSSION

4.1 Future Direction

This project has several direction that would improve upon it and its performance.

First, utilizing all ten available GPIOs on the BeagleBone black would allow for richer control
of the mouse and keyboard as opposed to the four GPIOs currently implemented. In order to
achieve this, the accelerometer’s integration could be completed and the change in certain angles
could activate GPIOs. Furthermore, this system could be applied to more hand gestures that vary
in the muscles they activate which might allow for the recognition of up to six hand gestures. All
together, the accelerometer could be used to control the movement of the mouse via four GPIOs
and six total hand gestures could be implemented to control the remaining six GPIOs.

This leads to the other main direction this project could go in. In order to increase the max-
imum number of hand gestures the system is able to recognize with a high degree of accuracy
further testing should be done with varying types of hand gestures and with different ANN archi-
tectures. The Multiple Back Propagation software allows for the use of space networks, a novel
method which is said to improve on recognition accuracy, which could be tested. Furthermore,
different EMG signal characteristics could be tested to see which combination of characteristics
achieves the best trained ANNSs. In addition, it may be the case that more than four characteristics
need to be acquired from each EMG signal in order to increase the number of hand gestures
able to be recognized accurately. Furthermore, the AD7689 used has the potential of acquiring
data for eight EMG signals. Thus, the number of surface electrodes could be increased, in fact
doubled from the number used in this project, in order to acquire more EMG information and
characteristics, for each hand gesture.

Since this would require a lot of repetitive testing, the Multiple Back Propagation software may
not be ideal since the only way to train ANNS is through the user interface on a Windows machine.
A possible alternative might be the FANN(Fast Artificial Neural Networks) library which is sup-
ported for C. This library is able to train, test and implement ANNSs all through C code. Though
the FANN library is not used in this project because it would have required an external third party
library and installation of it on the BeagleBone Black board, it may be a valid option for future work.

Finally, in terms of replication, if this system were to be redesigned the PCB board would

34

EMG Analysis and Recognition for HDI e David Nahmias

be redesigned to correct errors made, include the AC couple circuit and possibly allow for EMG
eight channels. Furthermore, either an alternative to the BeagleBone Black might be used or the
BeagleBone Black could be used without the Linux OS. This might be desired since given the appli-
cation the BeagleBone Black is used for in this project the operating system many times hindered
development and made communication with other devices, particularly the SPI communication
with the AD7689, very difficult. In the future, perhaps a processor of similar processing power
with the ability to run a compiled C program, perform SPI and I?C protocols and activate GPIOs
might be used.

4.2 Conclusion

Overall the system works as desired and is able to control the desired HDI, mouse movements
and desired keys on a keyboard, in real time through hand gestures. Furthermore, the results are
repeatable and the system can be used on different occasions, with the arm band being taken off
and put back on, while maintaining a high level of accuracy. It is also able to be used by others but
training an ANN with that person’s data would most likely increase the accuracy of the system
when they use it.

In conclusion, this project succeeded in developing, mostly from the ground up, a system that

through EMG signals classified by ANNs allows for the control of an HDI through more natural
motions and hand gestures.

35

EMG Analysis and Recognition for HDI e David Nahmias

ACKNOWLEDGMENTS

I would like to thank the Swarthmore College Engineering Department for funding this project
and providing me with the tools and lab space.

I would also like to acknowledge Edmond Jaoudi for all his help with the many electronic aspects
of this project.

Finally, I would like to acknowledge and thank my advisor, Professor Erik Cheever, for his
invaluable help in the completion of this project.

REFERENCES

[1] S. E. Barrett and J. Kridner, editors. Bad to the Bone: Crafting Electronics Systems with Beaglebone
and BeagleBone Black. Morgan & Claypool, 2013.

[2] R. N. Khushaba and S. Kodagoda. Electromyogram (emg) feature reduction using mu-
tual components analysis for multifunction prosthetic fingers control. Int. Conf. on Control,
Automation, Robotics & Vision (ICARCV), Guangzhou, pages 1534-1539, 2012.

[3] Precision, low power instrumentation amplifiers. http://www.ti.com/lit/ds/sbos051b/
sbos051b.pdf, 1995 (revised-2005). Part Name: INA128.

[4] The ‘rail splitter’ precision to virtual ground. http://pdfi.alldatasheet.com/
datasheet-pdf/view/84557/TI/TLE2426CD.html, 1997. Part Name: 2426C.

[5] Three-terminal positive voltage regulator. http://pdf .datasheetcatalog.com/datasheet/
motorola/MC7809.pdf, 1997. Part Name: 5v-MC7805C, 6v-MC7806C.

[6] Micropower precision, dual/quad cmos rail-to-rail input/output amplifiers. http://cds.
linear.com/docs/en/datasheet/60789fa.pdf, 2005. Part Name: LTC6079CGN.

[7] 16-bit, 4-channel/8-channel, 250 ksps pulsar adc. |http://www.analog.com/static/
imported-files/data_sheets/AD7682_7689.pdf, 2012. Part Name: AD7689.

[8] Mpu-6000/mpu-6050 register map and descriptions. http://invensense.com/mems/gyro/
documents/RM-MPU-6000A.pdf, 2012. Part Name: MPU6050.

[9] 16-bit, 250 ksps, 8-channel, single supply, isolated data acquisition system. http://www,
analog.com/static/imported-files/circuit_notes/CN0254.pdf, 2013. Part Name: CN-
0254.

[10] Mpu-6000/mpu-6050 product specification. http://www.invensense.com/mems/gyro/
documents/PS-MPU-6000A-00v3.4.pdf, 2013. Part Name: MPU6050.

[11] Documentation on beaglbone black. http://elinux.org/Beagleboard:BeagleBoneBlack!
Accessed: 05/01/2014.

[12] Enabling spi on beaglbone black. http://elinux.org/BeagleBone_Black_Enable_SPIDEV.
Accessed: 05/01/2014.

[13] Using i’c on beaglbone black. http://elinux.org/Interfacing_with_I2C_Devices. Ac-
cessed: 05/01/2014.

[14] Beaglebone resources and tutorials. http://derekmolloy.ie/beaglebone/. Accessed:
05/01/2014.

36

http://www.ti.com/lit/ds/sbos051b/sbos051b.pdf
http://www.ti.com/lit/ds/sbos051b/sbos051b.pdf
http://pdf1.alldatasheet.com/datasheet-pdf/view/84557/TI/TLE2426CD.html
http://pdf1.alldatasheet.com/datasheet-pdf/view/84557/TI/TLE2426CD.html
http://pdf.datasheetcatalog.com/datasheet/motorola/MC7809.pdf
http://pdf.datasheetcatalog.com/datasheet/motorola/MC7809.pdf
http://cds.linear.com/docs/en/datasheet/60789fa.pdf
http://cds.linear.com/docs/en/datasheet/60789fa.pdf
http://www.analog.com/static/imported-files/data_sheets/AD7682_7689.pdf
http://www.analog.com/static/imported-files/data_sheets/AD7682_7689.pdf
http://invensense.com/mems/gyro/documents/RM-MPU-6000A.pdf
http://invensense.com/mems/gyro/documents/RM-MPU-6000A.pdf
http://www.analog.com/static/imported-files/circuit_notes/CN0254.pdf
http://www.analog.com/static/imported-files/circuit_notes/CN0254.pdf
http://www.invensense.com/mems/gyro/documents/PS-MPU-6000A-00v3.4.pdf
http://www.invensense.com/mems/gyro/documents/PS-MPU-6000A-00v3.4.pdf
http://elinux.org/Beagleboard:BeagleBoneBlack
http://elinux.org/BeagleBone_Black_Enable_SPIDEV
http://elinux.org/Interfacing_with_I2C_Devices
http://derekmolloy.ie/beaglebone/

EMG Analysis and Recognition for HDI e David Nahmias

[15] Latest image of angstrom for beaglebone black board. http://beagleboard.org/
latest-images/. Accessed: 05/01/2014.

[16] Makey-makey website. www.makeymakey.com. Accessed: 05/01/2014.

[17] Multiple back propagation: Software source and turtorial. http://mbp.sourceforge.net/.
Accessed: 05/01/2014.

37

http://beagleboard.org/latest-images/
http://beagleboard.org/latest-images/
www.makeymakey.com
http://mbp.sourceforge.net/

EMG Analysis and Recognition for HDI e David Nahmias

5.1

5. APPENDIX

Complete List of Materials

One Mini USB to USB cable

One BeagleBone Black board from Texas Instruments
One AD789 from Analog Devices

One CN-0245 from Analog Devices

One MPU6050 from InveSense

One Makey Makey Board

Nine Electrodes from Grass Technologies

Nine color matching crimped wires to connect from Electrodes to screw terminals
One male DB9 with screw terminals

Ten20 Conductive Paste from Grass Technologies
Velcro and Elastic straps for Electrodes

Circuit Elements on AC Couple

— Sixteen 1MQ) resistors
- Eight 0.1uF capacitors
— One female DB9 connector with ribbon wire

— One male DB9 connector with ribbon wire
One Printed Circuit Board, see Figures [/} [8, 9]
Circuit Elements on PCB, see Figures[7} 8 [9]

— One LTC6079CGN from Linear Technology

— Four INA128 from Texas Instruments

— One 2426C from Texas Instruments

— One mounted female DB9 adapter

— One right angled ten pin connector, with 0.2in spacing
- Four two pin jumpers

— Four eight pin IC sockets

— Twelve 0.1uF capacitors

— Two 10uF capacitors

- Four 51kQ) resistors

- Four 510Q) resistors

- Eight precision 0.1y F capacitors

38

o

)

EMG Analysis and Recognition for HDI e David Nahmias

- Four pairs of precision 0.1uF capacitors soldered together in parallel for equivalent
0.2uF capacitors

- Eight precision 27k() resistors
— Four pairs of precision 27k() resistors soldered together in parallel for equivalent 13.5k()
resistors

e Mobile Power Supply

- Batteries producing a voltage of at least 7.5V

— Appropriate battery enclosure with wire leads

- Two Male power to wire ground centered power adapters
— One Female power to wire ground centered power adapter
— One MC7805C from Motorola

— One MC7806C from Motorola

5.2 HandGestureRec.c - Main Run File

/%
handGestureRec.c By: David Nahmias

3| Electromyography data acquisition and analysis program for recognizing electromyography

data via an Artificial Neural Network to drive GPIO signals.
Written by: David Nahmias

5| For Engineering 90 Senior Design project at Swarthmore College.

In order to run code effectively:
The number of hand gestures, variable defined as 'numOfHandGestures’, initialized on line
446, must be changed to the appropriate number.

To compile: gcc —o handGestureRec handGestureRec.c —Ipthread —Im
To run ./handGestureRec

*/

#include <stdio.h>

s|#include <stdlib .h>

#include <string.h>

7| #include <stdint.h>

#include <pthread.h>
#include <unistd.h>
#include <errno.h>
#include <sys/mman.h>
#include <sys/types.h>

;| #include <sys/stat.h>

#include <sys/ioctl.h>

s| #include <fcntl.h>

#include <linux/spi/spidev.h>
#include <linux/i2c—dev.h>
#include <linux/i2c.h>
#include <linux/types.h>

#include <math.h>
#include "classificationFunctions.c"

3| #include "MPBnnEval.c"
#include "beaglebone_gpio.h"

39

EMG Analysis and Recognition for HDI e David Nahmias

#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
37| #define MAXPATH 16

9| //Initialize struct for data transfer between threads
struct params{

41 double data[4][128];

pthread_mutex_t lockl;

13 int flagStart;

b

void* accelerometer_thread (void =xarg){
47 struct params xp = (struct params x*)arg;

49 //Start GPIO Setup for this Thread
volatile void xgpio_addr = NULL;

51 volatile unsigned int *xgpio_setdataout_addr = NULL;
volatile unsigned int *gpio_cleardataout_addr = NULL;
53 int fd = open("/dev/mem", O_RDWR) ;

55 gpio_addr = mmap(0, GPIO1_SIZE, PROT_READ | PROT_WRITE, MAP SHARED, fd,
GPIO1_START_ADDR) ;

57 gpio_setdataout_addr = gpio_addr + GPIO_SETDATAOUT;
gpio_cleardataout_addr = gpio_addr + GPIO_CLEARDATAOUT;
59
if (gpio_addr == MAP _FAILED) {

61 printf("Unable to map GPIO\n");
exit(1);

63 }

65 //End GPIO Setup for this Thread

67 uintl6_t accel_x, accel_y, accel_z;
unsigned char wBuf[64];
69 unsigned char rBuf[64];

71 int file;

char *filename = "/dev/i2c—1";

73 if ((file = open(filename, ORDWR)) < 0) {

/* ERROR HANDLING: you can check errno to see what went wrong */

75 perror("Failed to open the i2c bus");
exit(1);
77 }
79 unsigned char addr = 0x68; // The 12C address of the device
if (ioctl(file, I2C_SLAVE, addr) < 0) {
81 printf("Failed to acquire bus access and/or talk to slave.\n");

/* ERROR HANDLING; you can check errno to see what went wrong x*/
83 exit(1);
}

unsigned char wBufOn[64];

87 wBufOn[0] = Ox6b;
wBufOn[1] = 0x00;
89 if (write(file , wBufOn, 2) != 2) {

// ERROR HANDLING: i2c¢ transaction failed

91 printf("Failed to read from the i2c bus: %s.\n", strerror(errno));
printf ("\n\n");

93 }

% while (1) {

40

99

101

115

119

129

131

133

137

139

141

143

147

149

EMG Analysis and Recognition for HDI e David Nahmias

if (ioctl(file, I2C_SLAVE, addr) < 0) {
printf ("Failed to acquire bus access and/or talk to slave.\n");
/* ERROR HANDLING; you can check errno to see what went wrong =/
exit(1);

}

//Set initial register to read

wBuf[0] = 0x3b;

if (write(file, wBuf, 1) != 1) {
// ERROR HANDLING: i2c¢ transaction failed
printf ("Failed to read from the i2c¢ bus: %s.\n", strerror(errno));
printf ("\n\n");

}

if (ioctl(file, 12C_SLAVE, addr) < 0) {
printf("Failed to acquire bus access and/or talk to slave.\n");
/* ERROR HANDLING; you can check errno to see what went wrong */
exit(1);

}

//Reading registers in burst mode

// Using 12C Read

if (read(file ,rBuf,1) != 1) {
/* ERROR HANDLING: i2c¢ transaction failed x/
printf ("Failed to read from the i2c bus: %s.\n", strerror(errno));
printf ("\n\n");

}

accel_x = rBuf[0];

// Using 12C Read

if (read(file ,rBuf,1) != 1) {
/+ ERROR HANDLING: i2c¢ transaction failed =/
printf ("Failed to read from the i2c¢ bus: %s.\n", strerror(errno));
printf ("\n\n");

}

accel_x = (accel_x<<8)+rBuf[0];

//printf (" Accel X: %X\n",accel_x);

// Using 12C Read

if (read(file ,rBuf,1) != 1) {
/* ERROR HANDLING: i2c¢ transaction failed =/
printf ("Failed to read from the i2c bus: %s.\n", strerror(errno));
printf ("\n\n");

}

accel_y = rBuf[0];

// Using 12C Read

if (read(file ,rBuf,1) != 1) {
/+ ERROR HANDLING: i2c transaction failed x/
printf ("Failed to read from the i2c bus: %s.\n", strerror(errno));
printf ("\n\n");

}

accel_y = (accel_y<<8)+rBuf[0];

//printf (" Accel Y: %X\n",accel_y);

// Using 12C Read

if (read(file ,rBuf,1) != 1) {
/* ERROR HANDLING: i2c transaction failed x*/
printf ("Failed to read from the i2c bus: %s.\n", strerror(errno));
printf ("\n\n");

41

159

161

165

169

179

181

189

193

195

199

201

203

207

209

EMG Analysis and Recognition for HDI e David Nahmias

}

accel_z = rBuf[0];

// Using 12C Read

if (read(file ,rBuf,1) != 1) {
/* ERROR HANDLING: i2c¢ transaction failed x/
printf ("Failed to read from the i2c¢ bus: %s.\n", strerror(errno));
printf ("\n\n");

}

accel_z = (accel_z<<8)+rBuf[0];

//printf ("Accel Z: %X\n",accel_z);

//Calculate angles from raw data

float pitch = atan(accel_x/sqrt(pow(accel_y ,2)+pow(accel_z,2)));
float roll = atan(accel_y/sqrt(pow(accel_x ,2)+pow(accel_z,2)));
float yawish = atan(sqrt(pow(accel_x ,2)+pow(accel_y ,2))/accel_z);

printf ("pitch = %lf , roll = %If, yaw = %Ilf\n",pitch, roll ,yawish);
/*Certain GPIOs could then be activated depending on change in pitch, roll or

}

void* SPIdata_thread(void *arg) {
struct params xp = (struct params x*)arg;

//Start GPIO Setup
volatile void xgpio_addr = NULL;

volatile unsigned int *xgpio_setdataout_addr = NULL;
volatile unsigned int *gpio_cleardataout_addr = NULL;

volatile unsigned int *gpio_oe_addr8_11 = NULL;
unsigned int reg8_11;
volatile unsigned int *gpio_oe_addr8_12 = NULL;
unsigned int reg8_12;
volatile unsigned int xgpio_oe_addr8_15 = NULL;
unsigned int reg8_15;
volatile unsigned int xgpio_oe_addr8_16 = NULL;
unsigned int reg8_16;
volatile unsigned int xgpio_oe_addr8_26 = NULL;
unsigned int reg8_26;

volatile unsigned int *gpio_oe_addr9_12 = NULL;
unsigned int reg9_12;
volatile unsigned int xgpio_oe_addr9_14 = NULL;
unsigned int reg9_14;
volatile unsigned int *gpio_oe_addr9_15 = NULL;
unsigned int reg9_15;
volatile unsigned int xgpio_oe_addr9_16 = NULL;
unsigned int reg9_16;
volatile unsigned int *gpio_oe_addr9_23 = NULL;
unsigned int reg9_23;

int fd = open("/dev/mem", ORDWR);

gpio_addr = mmap(0, GPIO1_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd,
GPIO1_START_ADDR) ;

gpio_setdataout_addr = gpio_addr + GPIO_SETDATAOUT;
gpio_cleardataout_addr = gpio_addr + GPIO_CLEARDATAOUT;

42

yaw

EMG Analysis and Recognition for HDI e David Nahmias

if (gpio_addr == MAP_FAILED) {

217 printf ("Unable to map GPIO\n");
exit(1);
219 }
21 gpio_oe_addr8_11 = gpio_addr + GPIO_OE;
reg8_11 = xgpio_oe_addr8_11;
23 //printf ("GPIO1l configuration: %X\n", reg8_11);
reg8_11 = reg8_11 & (OxFFFFFFFF — GPIOS8_11);
225 xgpio_oe_addr8_11 = reg8_11;

//printf ("GPIO1 configuration: %X\n", reg8_11);
227

gpio_oe_addr8_12 = gpio_addr + GPIO_OE;

229 reg8_12 = xgpio_oe_addr8_12;
//printf ("GPIO1 configuration: %X\n", reg8_12);
231 reg8_12 = reg8_12 & (OxFFFFFFFF — GPIOS8_12);
xgpio_oe_addr8_12 = reg8_12;
233 //printf ("GPIO1l configuration: %X\n", reg8_12);
235 gpio_oe_addr8_15 = gpio_addr + GPIO_OE;
reg8_15 = xgpio_oe_addr8_15;
237 //printf ("GPIO1 configuration: %X\n", reg8_15);
reg8_15 = reg8_15 & (OxFFFFFFFF — GPIO8_15);
239 xgpio_oe_addr8_15 = reg8_15;

//printf ("GPIO1l configuration: %X\n", reg8_15);
241

gpio_oe_addr8_16 = gpio_addr + GPIO_OE;

243 reg8_16 = xgpio_oe_addr8_16;
//printf ("GPIO1l configuration: %X\n", reg8_16);
245 reg8_16 = reg8_16 & (OxFFFFFFFF — GPIO8_16);
xgpio_oe_addr8_16 = reg8_16;
247 //printf ("GPIO1 configuration: %X\n", reg8_16);
249 gpio_oe_addr8_26 = gpio_addr + GPIO_OE;
reg8_26 = xgpio_oe_addr8_26;
251 //printf ("GPIO1 configuration: %X\n", reg8_26);
reg8_26 = reg8_26 & (OxFFFFFFFF — GPIO8_26);
253 xgpio_oe_addr8_26 = reg8_26;

//printf ("GPIO1l configuration: %X\n", reg8_.26);

257 gpio_oe_addr9_12 = gpio_addr + GPIO_OE;
reg9_12 = xgpio_oe_addr9_12;

259 //printf ("GPIO1l configuration: %X\n", reg9_12);
reg9_12 = reg9_12 & (OxFFFFFFFF — GPIO9_12);

261 xgpio_oe_addr9_12 = reg9_12;

//printf ("GPIO1 configuration: %X\n", reg9_12);
263

gpio_oe_addr9_14 = gpio_addr + GPIO_OE;

265 reg9_14 = xgpio_oe_addr9_14;
//printf ("GPIO1l configuration: %X\n", reg9_14);
267 reg9_14 = reg9_14 & (O0xFFFFFFFF — GPIO9_14);
xgpio_oe_addr9_14 = reg9_14;
269 //printf ("GPIO1l configuration: %X\n", reg9_14);
271 gpio_oe_addr9_15 = gpio_addr + GPIO_OE;
reg9_15 = xgpio_oe_addr9_15;
273 //printf ("GPIO1 configuration: %X\n", reg9_15);
reg9_15 = reg9_15 & (OxFFFFFFFF — GPIO9_15);
275 xgpio_oe_addr9_15 = reg9_15;

//printf ("GPIO1 configuration: %X\n", reg9_15);

43

EMG Analysis and Recognition for HDI e David Nahmias

gpio_oe_addr9_16 = gpio_addr + GPIO_OE;

279 reg9_16 = xgpio_oe_addr9_16;
//printf ("GPIO1 configuration: %X\n", reg9_16);
281 reg9_16 = reg9_16 & (0xFFFFFFFF — GPIO9_16) ;
xgpio_oe_addr9_16 = reg9_16;
283 //printf ("GPIO1l configuration: %X\n", reg9_16);
285 gpio_oe_addr9_23 = gpio_addr + GPIO_OE;
reg9_23 = xgpio_oe_addr9_23;
287 //printf ("GPIO1 configuration: %X\n", reg9_23);
reg9_23 = reg9_23 & (OxFFFFFFFF — GPIO9_23);
289 xgpio_oe_addr9_23 = reg9_23;

//printf ("GPIO1 configuration: %X\n", reg9_23);
291

//End GPIO Setup

//Start SPI Setup

295 uint8_t bits = 16;
int ret = 0;
297 charx list;
int length_list = 1;
299 uintl6_t delay = 5;
uint32_t speed = 1000000;
301 uint8_t tx[length_list];

303 //Transmitted in this order since data is received at n-2
uintl6_t tx0[1]={0xf424};//Actually CH2
305 uintlé6_t tx1[1]={0xf624};//Actually CH3
uintl6_t tx2[1]={0xf024};//Actually CHO
307 uintl6_t tx3[1]={0xf224};//Actually CHI

309 //Initialize data received from SPI
int8_t rx[ARRAY_SIZE(tx)];

311 intl6_t rx0[ARRAY_SIZE(tx0)];
intl6_t rx1[ARRAY SIZE(tx1)];
313 intl6_t rx2[ARRAY_SIZE(tx2)];

intl6_t rx3[ARRAY SIZE(tx3)];

/*This is the transfer part, and sets up
317 the details needed to transfer the datax/
struct spi_ioc_transfer tr0 = {

319 .tx_buf = (unsigned long)tx0,

.rx_buf = (signed long)rx0,

321 .len = 2xARRAY_SIZE(tx0),

.delay_usecs = delay,

323 .speed_hz = speed,

.bits_per_word = bits,

bi

W
5
S

327 struct spi_ioc_transfer trl = {
.tx_buf = (unsigned long)tx1,
329 .rx_buf = (signed long)rxl,

.len = 2xARRAY_SIZE(tx1),
331 .delay_usecs = delay,
.speed_hz = speed,

333 .bits_per_word = bits,

¥

struct spi_ioc_transfer tr2 = {
.tx_buf = (unsigned long)tx2,

J

44

349

355

363

365

367

379

387

389

395

EMG Analysis and Recognition for HDI e David Nahmias

.rx_buf = (signed long)rx2,
.len = 2xARRAY_SIZE(tx2),
.delay_usecs = delay,
.speed_hz = speed,
.bits_per_word = bits,

b

struct spi_ioc_transfer tr3 = {

.tx_buf = (unsigned long)tx3,
.rx_buf = (signed long)rx3,

.len = 2xARRAY_SIZE(tx3),
.delay_usecs = delay,
.speed_hz = speed,
.bits_per_word = bits,

b

int fd2 = open("/dev/spidev2.0" ,ORDWR);

if (fd2 < 0) {
printf ("Can’t open device file: %X\n", fd2);
//exit(—1);

}

//End SPI Setup

int length = 128; //Length of data packets
int i;
while (1) {

//Initially give mutex lock to this thread and then set flag high
if (p—>flagStart == 0){

pthread_mutex_lock (& (p—>lockl));

p—>flagStart = 1;
}

//printf ("New Array!\n");
//Toggle LED as data is acquired, ON indicates data is being acquired
xgpio_setdataout_addr= USRI_LED;

//Acquire data packets
for(i=0;i<length;i++){
//Perform SPI for each channel sequentially

//CHO
ret = ioctl (fd2, SPI_IOC_MESSAGE(1), &tr0);
if (ret < 1){
printf ("ERROR: Can’t send spi message \n");
}

//CH1
ret = ioctl (fd2, SPILIOC_MESSAGE(1), &trl);
if (ret < 1){
printf ("ERROR: Can’t send spi message \n");
}

//CH2
ret = ioctl(fd2, SPILIOC_MESSAGE(1), &tr2);
//*gpio_setdataout_addr = USRI_LED;
if (ret < 1){

printf ("ERROR: Can’t send spi message \n");
}

45

399

405

407

409

417

123

429

431

433

435

443

447

449

EMG Analysis and Recognition for HDI e David Nahmias

}

//CH3
ret = ioctl(fd2, SPI_IOC_MESSAGE(1), &tr3);
if (ret < 1){
printf ("ERROR: Can’t send spi message \n");
}

//Allocate data from transfer

p—>data[0][i] = (double)rx0[0];
p—>data[1][i] = (double)rx1[O0];
p—>data[2][i] = (double)rx2[0];
p—>data[3][1i] (double)rx3[0];

//printf ("RO = %lf , Rl = %lf , R2= %lf , R3 = %lf\n",p—>data[0][i],p—>data[1][i
], p—>data[2][i],p—>data[3][i]);

//printf ("RO = %.4X, Rl = %.4X, R2= %.4X, R3 = %.4X\n",rx0[0],rx1[0],rx2[0],
rx3[0]);

//Delay for 1kHz sampling rate
usleep (850) ;
xgpio_cleardataout_addr = USRI_LED;
}
//Release mutex lock for data analysis thread to acquire
pthread_mutex_unlock (&(p—>lockl));
//Imediately request mutex lock, to be acquired when data analysis thread
releases the mutex lock
pthread_mutex_lock (&(p—>lockl));
}

5| int main(int argc, char =xargv[]) {

//Start GPIO Setup for this Thread
volatile void xgpio_addr = NULL;
volatile unsigned int *xgpio_setdataout_addr = NULL;
volatile unsigned int *gpio_cleardataout_addr = NULL;
int fd = open("/dev/mem", O_RDWR) ;

gpio_addr = mmap(0, GPIO1_SIZE, PROT_READ | PROT_WRITE, MAP SHARED, fd,
GPIO1_START_ADDR) ;

gpio_setdataout_addr = gpio_addr + GPIO_SETDATAOUT;
gpio_cleardataout_addr = gpio_addr + GPIO_CLEARDATAOUT;

if (gpio_addr == MAP _FAILED) {
printf("Unable to map GPIO\n");
exit(1);

}

//End GPIO Setup for this Thread

//CHANGE VALUE FOR NUMBER OF HAND GESTURES:
int numOfHandGestures = 4;

int lengthOfData = 128;

int numOfChannels = 4;

double dataCur[numOfChannels][lengthOfData];
double dataCurMean[numOfChannels][lengthOfData];
double proData[16];

double filterCalc[2];

double netOutput[numOfHandGestures |;

int maxLoc = 0;

46

161

465

467

469

477

479

481

487

489

493

195

497

499

501

EMG Analysis and Recognition for HDI e David Nahmias

int prevHand = 0;
int numHandSeq = 0;
int slpChangedCur;
int meanCross;

int ch;

int nnOut;

//Initialize struct for data transfer between threads
struct params xp = malloc(sizeof(struct params));
//Initialize flag to low

p—>flagStart = 0;

//Initialize mutex lock
pthread_mutex_init(&(p—>lock1), NULL);

//Initialize data acquisition thread
pthread_t pid;
pthread_create(&pid ,NULL, SPIdata_thread ,(void*)p);

//Initialize accelerometer thread
pthread_t pid2;
pthread_create(&pid2 ,NULL, accelerometer_thread ,(void)p);

//Wait until flag is set high and data acquisition has begun
while (p—>flagStart != 1){
}

//Initialize GPIOs by setting them all low
xgpio_cleardataout_addr = GPIO8_11;
xgpio_cleardataout_addr = GPIO8_12;
xgpio_cleardataout_addr = GPIO8_15;
xgpio_cleardataout_addr = GPIO8_16;
xgpio_cleardataout_addr = GPIO8_26;

xgpio_cleardataout_addr = GPIO9_12;
xgpio_cleardataout_addr = GPIO9_14;
xgpio_cleardataout_addr = GPIO9_15;
xgpio_cleardataout_addr = GPIO9_16;
xgpio_cleardataout_addr = GPIO9_23;

while (1) {
//Request mutex lock and acquire when data packet acquisition is complete
pthread_mutex_lock (&(p—>lockl));
//Copy Data
memcpy (dataCur ,p—>data, sizeof (p—>data));
//Release mutex lock to be acquired by data acquisition thread
pthread_mutex_unlock (&(p—>lock1));

//Access the Data

float data0,datal,data2,6data3;

dataO0=dataCur[0][0];

datal=dataCur[1][0];

data2=dataCur[2][0];

data3=dataCur[3][0];

//printf (" First PeiceOfData: %lf , %lf , %lf, %lf\n", dataCur[0][0], dataCur[1][0],
dataCur[2][0], dataCur[3][0]);

//Perform analysis of data

for(ch = 0; ch<numOfChannels; ch++){
zeroMean (dataCur[ch],dataCurMean[ch], lengthOfData) ;
filterHiLow (dataCurMean[ch], filterCalc ,lengthOfData) ;
proData[(0) +(ch*xnumOfChannels)] = filterCalc[0];

47

521

523

537

545

547

561

569

3

EMG Analysis and Recognition for HDI e David Nahmias

proData[(1) +(ch*numOfChannels)] = filterCalc[1];

slpChangedCur = slopeChange (dataCurMean[ch],lengthOfData);
proData[(2) +(ch*numOfChannels)] = slpChangedCur;

meanCross = meanCrossing (dataCurMean[ch],lengthOfData);
proData[(3) +(ch*xnumOfChannels)] = meanCross;

}

//prlntf (" Analyzed Data: O/ulf O/Olf O/OIf o/olf O/olf O/t)lf o/olf O/ulf O/olf O/OIf o/olf O/OIf O/t)lf o/olf
%l1f %lf\n",proData[0],proData[1],proData[2],proData[3],proData[4], proData[5],proData
[6],proData[7],proData[8],proData[9],proData[10],proData[11],proData[12],proData[13],
proData[14],proData[15]);

/«The rest of the code is written with the HDI application in mind.x*/

//1f the first element is small, less than 100, the hand is open, and the ANN can
be avoided.

if (proData[0] < 100){
maxLoc = 0;
printf ("Hand gesture number: %d—",maxLoc+1);
printf ("Open Hand\n") ;
xgpio_cleardataout_addr = GPIO8_11;
xgpio_cleardataout_addr = GPIO8_12;
xgpio_cleardataout_addr = GPIO8_15;
xgpio_cleardataout_addr = GPIOS8_16;
xgpio_cleardataout_addr = GPIO8_26;

xgpio_cleardataout_addr = GPIO9_12;
xgpio_cleardataout_addr = GPIO9_14;
xgpio_cleardataout_addr = GPIO9_15;
xgpio_cleardataout_addr = GPIO9_16;
xgpio_cleardataout_addr = GPIO9_23;
xgpio_setdataout_addr = GPIO8_26;

}

else {
//Evaluate data on ANN
MPBnnEval (proData , netOutput) ;

//ANN output for monotoring

/*

printf ("ANN Output:") ;

for (nnOut=0;nnOut<numOfHandGestures ; nnOut++) {
printf (" %lf",netOutput[nnOut]) ;

}

printf("/n");

*/

maxLoc = maxLocation (netOutput ,numOfHandGestures) ;

//printf ("Hand gesture number: %d\n", maxLoc+1);

//Because of some errors in recognition only if the same hand gesture is decteted
for a third time in a row are the GPIOs activated , so all GPIOs are set low
if (prevHand == maxLoc) {
numHandSeq++;
}
else {
numHandSeq = 0;
prevHand = maxLoc;

48

EMG Analysis and Recognition for HDI e David Nahmias

xgpio_cleardataout_addr = GPIO8_11;
573 xgpio_cleardataout_addr = GPIO8_12;
xgpio_cleardataout_addr = GPIO8_15;
575 xgpio_cleardataout_addr = GPIOS8_16;
xgpio_cleardataout_addr = GPIO8_26;

xgpio_cleardataout_addr = GPIO9_12;
579 xgpio_cleardataout_addr = GPIO9_14;
xgpio_cleardataout_addr = GPIO9_15;
581 xgpio_cleardataout_addr = GPIO9_16;
xgpio_cleardataout_addr = GPIO9_23;
583 }

585 if (numHandSeq > 2) {
if (maxLoc == 0){
587 xgpio_cleardataout_addr = GPIO8_11;
xgpio_cleardataout_addr = GPIO8_12;
589 xgpio_cleardataout_addr = GPIO8_15;

xgpio_cleardataout_addr = GPIO8_16;
591 xgpio_cleardataout_addr = GPIO8_26;

593 xgpio_cleardataout_addr = GPIO9_12;
xgpio_cleardataout_addr = GPIO9_14;
595 xgpio_cleardataout_addr = GPIO9_15;
xgpio_cleardataout_addr = GPIO9_16;
597 xgpio_cleardataout_addr = GPIO9_23;
xgpio_setdataout_addr = GPIO8_26;

599 printf ("Hand gesture number: %d—",maxLoc);
printf ("Open Hand\n");

601 }

else if (maxLoc == 1){

603 xgpio_cleardataout_addr = GPIO8_11;
xgpio_cleardataout_addr = GPIO8_12;
605 xgpio_cleardataout_addr = GPIO8_15;
xgpio_cleardataout_addr = GPIO8_16;
607 xgpio_cleardataout_addr = GPIO8_26;

609 xgpio_cleardataout_addr = GPIO9_12;
xgpio_cleardataout_addr = GPIO9_14;

611 xgpio_cleardataout_addr = GPIO9_15;
xgpio_cleardataout_addr = GPIO9_16;

613 xgpio_cleardataout_addr = GPIO9_23;
xgpio_setdataout_addr= GP108 11;

615 printf ("Hand gesture number: %d—",maxLoc+1);
printf ("Closed Hand\n");

else if (maxLoc == 2){

619 xgpio_cleardataout_addr = GPIO8_11;
xgpio_cleardataout_addr = GPIO8_12;
621 xgpio_cleardataout_addr = GPIO8_15;
xgpio_cleardataout_addr = GPIO8_16;
623 xgpio_cleardataout_addr = GPIO8_26;

625 xgpio_cleardataout_addr = GPIO9_12;
xgpio_cleardataout_addr = GPIO9_14;

627 xgpio_cleardataout_addr = GPIO9_15;
xgpio_cleardataout_addr = GPIO9_16;
629 xgpio_cleardataout_addr = GPIO9_23;

xgpio_setdataout_addr= GPIOS 12;
631 printf ("Hand gesture number: %d—",maxLoc+1);
printf ("Spiderman Hand\n") ;

49

637

639

641

643

645

647

649

o

EMG Analysis and Recognition for HDI e David Nahmias

}

else if (maxLoc == 3){
xgpio_cleardataout_addr = GPIO8_11;
xgpio_cleardataout_addr = GPIO8_12;
xgpio_cleardataout_addr = GPIO8_15;
xgpio_cleardataout_addr = GPIO8_16;
xgpio_cleardataout_addr = GPIO8_26;

xgpio_cleardataout_addr = GPIO9_12;
xgpio_cleardataout_addr = GPIO9_14;
xgpio_cleardataout_addr = GPIO9_15;
xgpio_cleardataout_addr = GPIO9_16;
xgpio_cleardataout_addr = GPIO9_23;
xgpio_setdataout_addr= GP108 15;
printf ("Hand gesture number: %d—",maxLoc+1);
printf ("Three Hand\n");

}

//Reset count to slow system down, constant GPIOs or GPIOs that are set to

quickly are not detected
numHandSeq = 0;
}

}

return 0;

5.3 trainNNGesture.c

/*
trainNNGesture.c By: David Nahmias

3| Electromyography data acquisition and analysis program for storing data to be trainned on

an Artificial Neural Network.
Written by: David Nahmias
For Engineering 90 Senior Design project at Swarthmore College.

In order to run code effectively:
The number of hand gestures, variable defined as 'numOfHandGestures’, initialized on line
293, must be changed to the appropriate number.

Then the program can be compiled and run.
To compile: gcc —o trainNNGesture trainNNGesture.c —Ipthread —Im
To run ./handGestureRec

3| Once all data is collected for training, to merge data type in terminal: cat % > allData.

dat
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <pthread.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fecntl.h>

s| #include <linux/spi/spidev.h>

50

EMG Analysis and Recognition for HDI e David Nahmias

#include <linux/types.h>

#include <sys/ioctl.h>

#include <math.h>

#include "classificationFunctions.c"
#include "MPBnnEval.c"

#include "beaglebone_gpio.h"

#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
s| #define MAXPATH 16

//Initialize struct for data transfer between threads
struct params{

double data[4][128];

pthread_mutex_t lockl;

int flagStart;

¥

void* SPIdata_thread(void *arg){
struct params xp = (struct params x*)arg;

//Start GPIO Setup
volatile void xgpio_addr = NULL;

volatile unsigned int *xgpio_setdataout_addr = NULL;
volatile unsigned int *gpio_cleardataout_addr = NULL;

volatile unsigned int *gpio_oe_addr8_11 = NULL;
unsigned int reg8_11;
volatile unsigned int *gpio_oe_addr8_12 = NULL;
unsigned int reg8_12;
volatile unsigned int xgpio_oe_addr8_15 = NULL;
unsigned int reg8_15;
volatile unsigned int xgpio_oe_addr8_16 = NULL;
unsigned int reg8_16;
volatile unsigned int *gpio_oe_addr8_26 = NULL;
unsigned int reg8_26;

volatile unsigned int *gpio_oe_addr9_12 = NULL;
unsigned int reg9_12;
volatile unsigned int *gpio_oe_addr9_14 = NULL;
unsigned int reg9_14;
volatile unsigned int *gpio_oe_addr9_15 = NULL;
unsigned int reg9_15;
volatile unsigned int xgpio_oe_addr9_16 = NULL;
unsigned int reg9_16;
volatile unsigned int xgpio_oe_addr9_23 = NULL;
unsigned int reg9_23;

int fd = open("/dev/mem", ORDWR);

gpio_addr = mmap(0, GPIO1_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd,

GPIO1_START_ADDR) ;

gpio_setdataout_addr = gpio_addr + GPIO_SETDATAOUT;
gpio_cleardataout_addr = gpio_addr + GPIO_CLEARDATAOUT;

if (gpio_addr == MAP _FAILED) {

printf ("Unable to map GPIO\n");
exit(1);

51

EMG Analysis and Recognition for HDI e David Nahmias

gpio_oe_addr8_11 = gpio_addr + GPIO_OE;

87 reg8_11 = xgpio_oe_addr8_11;
//printf ("GPIO1l configuration: %X\n", reg8_11);
89 reg8_11 = reg8_11 & (OxFFFFFFFF — GPIOS8_11);

xgpio_oe_addr8_11 = reg8_11;
91 //printf ("GPIO1 configuration: %X\n", reg8_11);

9% gpio_oe_addr8_12 = gpio_addr + GPIO_OE;

reg8_12 = xgpio_oe_addr8_12;

95 //printf ("GPIO1 configuration: %X\n", reg8_.12);
reg8_12 = reg8_12 & (OxFFFFFFFF — GPIO8_12);

97 xgpio_oe_addr8_12 = reg8_12;

//printf ("GPIO1l configuration: %X\n", reg8_12);

gpio_oe_addr8_15 = gpio_addr + GPIO_OE;

101 reg8_15 = xgpio_oe_addr8_15;

//printf ("GPIO1l configuration: %X\n", reg8_15);
103 reg8_15 = reg8_15 & (OxFFFFFFFF — GPIOS8_15);
xgpio_oe_addr8_15 = reg8_15;

105 //printf ("GPIO1 configuration: %X\n", reg8_15);

107 gpio_oe_addr8_16 = gpio_addr + GPIO_OE;

reg8_16 = xgpio_oe_addr8_16;

109 //printf ("GPIO1l configuration: %X\n", reg8_.16);
reg8_16 = reg8_16 & (OxFFFFFFFF — GPIO8_16);

111 xgpio_oe_addr8_16 = reg8_16;

//printf ("GPIO1 configuration: %X\n", reg8_16);

gpio_oe_addr8_26 = gpio_addr + GPIO_OE;

115 reg8_26 = xgpio_oe_addr8_26;

//printf ("GPIO1 configuration: %X\n", reg8_26);
117 reg8_26 = reg8_26 & (OxFFFFFFFF — GPIO8_26);
xgpio_oe_addr8_26 = reg8_26;

119 //printf ("GPIO1l configuration: %X\n", reg8.26);

gpio_oe_addr9_12 = gpio_addr + GPIO_OE;

123 reg9_12 = xgpio_oe_addr9_12;
//printf ("GPIO1l configuration: %X\n", reg9_12);
125 reg9_12 = reg9_12 & (OxFFFFFFFF — GPIO9_12);
xgpio_oe_addr9_12 = reg9_12;
127 //printf ("GPIO1l configuration: %X\n", reg9_12);
129 gpio_oe_addr9_14 = gpio_addr + GPIO_OE;

reg9_14 = xgpio_oe_addr9_14;

131 //printf ("GPIO1l configuration: %X\n", reg9_14);
reg9_14 = reg9_14 & (OxFFFFFFFF — GPIO9_14);

133 xgpio_oe_addr9_14 = reg9_14;

//printf ("GPIO1l configuration: %X\n", reg9_14);

gpio_oe_addr9_15 = gpio_addr + GPIO_OE;

137 reg9_15 = xgpio_oe_addr9_15;

//printf ("GPIO1 configuration: %X\n", reg9_15);
139 reg9_15 = reg9_15 & (OxFFFFFFFF — GPIO9_15);
xgpio_oe_addr9_15 = reg9_15;

141 //printf ("GPIO1l configuration: %X\n", reg9_15);
143 gpio_oe_addr9_16 = gpio_addr + GPIO_OE;

reg9_16 = xgpio_oe_addr9_16;
145 //printf ("GPIO1 configuration: %X\n", reg9_16);

reg9_16 = reg9_16 & (OxFFFFFFFF — GPIO9_16);

52

EMG Analysis and Recognition for HDI e David Nahmias

147 xgpio_oe_addr9_16 = reg9_16;
//printf ("GPIO1 configuration: %X\n", reg9_16);

gpio_oe_addr9_23 = gpio_addr + GPIO_OE;
151 reg9_23 = xgpio_oe_addr9_23;
//printf ("GPIO1 configuration: %X\n", reg9_23);

153 reg9_23 = reg9_23 & (OxFFFFFFFF — GPIO9_23);
xgpio_oe_addr9_23 = reg9_23;
155 //printf ("GPIO1 configuration: %X\n", reg9_23);

157 //End GPIO Setup

159 //Start SPI Setup
uint8_t bits = 16;

161 int ret = 0;

char* list;

163 int length_list = 1;
uintl6_t delay = 5;

165 uint32_t speed = 1000000;
uint8_t tx[length_list];

//Transmitted in this order since data is received at n-—2
169 uintl6_t tx0[1]={0xf424};//Actually CH2
uintl6_t tx1[1]={0xf624};//Actually CH3
171 uintl6_t tx2[1]={0xf024};//Actually CHO
uintl6_t tx3[1]={0xf224};//Actually CHI

//Initialize data received from SPI
175 int8_t rx[ARRAY_SIZE(tx)];

intl6_t rx0[ARRAY_SIZE(tx0)];

177 intl6_t rx1[ARRAY_SIZE(tx1)];
int16_t rx2[ARRAY_SIZE(tx2)];

179 intl6_t rx3[ARRAY_SIZE(tx3)];

181 /*This is the transfer part, and sets up
the details needed to transfer the datax/
183 struct spi_ioc_transfer tr0 = {

.tx_buf = (unsigned long)tx0,
185 .rx_buf = (signed long)rx0,
.len = 2xARRAY_SIZE(tx0),

187 .delay_usecs = delay,
.speed_hz = speed,
189 .bits_per_word = bits,
¥
191
struct spi_ioc_transfer trl = {

193 .tx_buf = (unsigned long)tx1,
.rx_buf = (signed long)rxl,
ws| .len = 2*ARRAY_SIZE(tx1),
.delay_usecs = delay,

197 .speed_hz = speed,
.bits_per_word = bits,

199 };

201 struct spi_ioc_transfer tr2 = {
.tx_buf = (unsigned long)tx2,

203 .rx_buf = (signed long)rx2,

.len = 2xARRAY_SIZE(tx2),

205 .delay_usecs = delay,
.speed_hz = speed,
207 .bits_per_word = bits,

53

209

227

229

)

237

239

241

249

N
G1

259

261

263

265

267

EMG Analysis and Recognition for HDI e David Nahmias

};

struct spi_ioc_transfer tr3 = {
.tx_buf = (unsigned long)tx3,
.rx_buf = (signed long)rx3,
.len = 2xARRAY_SIZE(tx3),
.delay_usecs = delay,
.speed_hz = speed,
.bits_per_word = bits,

b

int fd2 = open("/dev/spidev2.0" ,ORDWR);

if (fd2 < 0) {
printf ("Can’t open device file: %X\n", fd2);
//exit(—1);

}

//End SPI Setup

int length = 128; //Length of data packets
int i;
while (1) {

//Initially give mutex lock to this thread and then set flag high
if (p—>flagStart == 0){

pthread_mutex_lock (& (p—>lockl));

p—>flagStart = 1;
}

//printf ("New Array!\n");
//Toggle LED as data is acquired, ON indicates data is being acquired
xgpio_setdataout_addr= USRI_LED;

//Acquire data packets
for(i=0;i<length;i++){
//Perform SPI for each channel sequentially

//CHO
ret = ioctl (fd2, SPI_IOC_MESSAGE(1), &tr0);
if (ret < 1){
printf ("ERROR: Can’t send spi message \n");
}

//CH1
ret = ioctl(fd2, SPI_IOC_MESSAGE(1), &trl);
if (ret < 1){
printf ("ERROR: Can’t send spi message \n");
}

//CH2
ret = ioctl(fd2, SPILIOC_MESSAGE(1), &tr2);
//*gpio_setdataout_addr = USRI_LED;
if (ret < 1){

printf ("ERROR: Can’t send spi message \n");
}

//CH3
ret = ioctl (fd2, SPI_IOC_MESSAGE (1), &tr3);
if (ret < 1){
printf ("ERROR: Can’t send spi message \n");
}

54

269

277

279

283

285

287

289

291

293

295

297

299

305

EMG Analysis and Recognition for HDI e David Nahmias

int

//Allocate data from transfer

p—>data[0][i] = (double)rx0[0];
p—>data[1][i] = (double)rx1[0];
p—>data[2][i] = (double)rx2[0];
p—>data[3][1i] (double)rx3[0];

//printf ("RO = %lf , Rl = %lf , R2= %lf , R3 = %lf\n",p—>data[0][i],p—>data[1][i
], p—>data[2][i],p—>data[3][i]);

//printf ("RO = %.4X, Rl = %.4X, R2= %.4X, R3 = %.4X\n",rx0[0],rx1[0],rx2[0],
rx3[0]);

//Delay for 1kHz sampling rate
usleep (850) ;
xgpio_cleardataout_addr = USRI_LED;
}
//Release mutex lock for data analysis thread to acquire
pthread_mutex_unlock (&(p—>lockl));
//Imediately request mutex lock, to be acquired when data analysis thread
releases the mutex lock
pthread_mutex_lock (& (p—>lockl));
}

main(int argc, char xargv[]) {

//CHANGE VALUE FOR NUMBER OF HAND GESTURES:
int numOfHandGestures = 4;

int lengthOfData = 128;

int numOfChannels = 4;

double dataCur[numOfChannels][lengthOfData |;
double dataCurMean[numOfChannels][lengthOfData |;
double proData[16];

double filterCalc[2];

double netOutput[numOfHandGestures |;

int maxLoc = 0;

int slpChangedCur;

int meanCross;

int ch;

int knownOut[numOfHandGestures |;

int handGest;

int curHandKnown;

int numOfIter=500;

int iter;

int storeKnown;

printf ("Beginning data acquisition\n");

printf ("Please make and hold hand gesture 1\n");

printf ("You have three seconds until data acquisition begins\n");
usleep (3000000) ;

//Initialize struct for data transfer between threads
struct params xp = malloc(sizeof(struct params));
//Initialize flag to low

p—>flagStart = 0;

//Initialize mutex lock
pthread_mutex_init(&(p—>lock1), NULL);

//Initialize data acquisition thread
pthread_t pid;

55

EMG Analysis and Recognition for HDI e David Nahmias

327 pthread_create(&pid ,NULL, SPIdata_thread ,(void*)p);

329 //Wait until flag is set high and data acquisition has begun

while (p—>flagStart != 1){

331 }

//Iterate through the hand gestures

333 for (handGest=0;handGest<numOfHandGestures ; handGest++) {

if (handGest != 0){

335 printf ("Please make and hold hand gesture %d\n", handGest+1);
printf ("You have three seconds until data acquisition begins\n");
337 usleep (3000000) ;

}

339 for (curHandKnown = 0; curHandKnown<numOfHandGestures ; carHandKnown++) {
if (curHandKnown == handGest) {
341 knownOut[curHandKnown] = 1;
1
343 else {
knownOut[curHandKnown] = 0;
345 }
347 }
349 //Iterate through each trial for each hand gesture
for(iter=0;iter <numOflter;iter ++){
351 //Request mutex lock and acquire when data packet acquisition is complete

pthread_mutex_lock (& (p—>lockl));

//Copy Data

memcpy (dataCur ,p—>data, sizeof (p—>data));

355 //Release mutex lock to be acquired by data acquisition thread
pthread_mutex_unlock (&(p—>lockl));

printf ("Hand Gesture: %d, Trial Number: %d\n", handGest+1,iter+1);

//Access the Data

361 float dataO,datal,data2,data3;
dataO=dataCur[0][0];

363 datal=dataCur[1][0];
data2=dataCur[2][0];

365 data3=dataCur[3][0];

//printf (" First PeiceOfData: %lf , %lf , %lf, %lf\n", dataCur[0][0], dataCur
[1][0], dataCur[2][0], dataCur[3][0]);
367
//Perform analysis of data
369 for(ch = 0; ch<numOfChannels; ch++){
zeroMean (dataCur[ch],dataCurMean[ch], lengthOfData) ;
371 filterHiLow (dataCurMean|[ch], filterCalc ,lengthOfData) ;
proData [(0) +(ch*numOfChannels)] = filterCalc[0];
373 proData[(1) +(ch*numOfChannels)] = filterCalc[1];

375 slpChangedCur = slopeChange(dataCurMean[ch],lengthOfData);
proData[(2) +(ch*xnumOfChannels)] = slpChangedCur;
377
meanCross = meanCrossing (dataCurMean[ch],lengthOfData) ;
379 proData[(3) +(ch*numOfChannels)] = meanCross;
}
381 //Monotor data to be stored

//prlntf (” Analyzed Data: o/olf 0/()1f O/Olf u/olf 0/()1f 0/0lf ()/()lf O()lf 0/01f %)lf o/olf 0/()1f O/olf
%lf %lf %lf\n",proData[0],proData[1],proData[2],proData[3],proData[4],proData[5],
proData[6],proData[7], proData[8],proData[9],proData[10],proData[11],proData[12],
proData[13],proData[14],proData[15]);

56

391

399

401

405

407

EMG Analysis and Recognition for HDI e David Nahmias

N

20

//Store data in .txt files for each hand gesture.
char filename [50];
if (handGest<10){
sprintf (filename, "/home/root/Documents/E90/data/myProData0%d. txt",
handGest) ;
1
else {
sprintf (filename , "/home/root/Documents/E90/data/myProData%d. txt",
handGest) ;
}
FILE xwriteFile = fopen(filename, "a");
fprintf(writeFile , "%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %
If %lf" ,proData[0],proData[1],proData[2],proData[3],proData[4], proData[5],proData[6],
proData[7],proData[8], proData[9],proData[10],proData[11],proData[12],proData[13],
proData[14],proData[15]);

for (storeKnown = 0; storeKnown<numOfHandGestures; storeKnown++) {
fprintf (writeFile ," %d" ,knownOut[storeKnown]) ;

}
fprintf (writeFile ,"/n");
fclose (writeFile);

}
printf ("Done with hand gesture %d\n",handGest+1);

}
printf ("Done with all hand gestures!\n");
return 0;

5.4 classificationFunctions.c

/ *

classificationFunctions.c By: David Nahmias

Electromyography data acquisition and analysis program for recognizing electromyography
data via an Artificial Neural Network to drive GPIO signals.

Written by: David Nahmias

For Engineering 90 Senior Design project at Swarthmore College.

This code is a compilation of functions that are used in the main trainning and
evaluation C files.

*/

#include <math.h>
#define ARRAY SIZE(a) (sizeof(a) / sizeof((a)[0]))

/*Function for zero—ing out the mean from the vectors/
void zeroMean(double *inVec, double xoutVec, int length){

double average;

double sum;

double n = length;

int i,

for(i = 0; i < length; i++){
sum = sum + inVec[i];

}

57

64

66

68

EMG Analysis and Recognition for HDI e David Nahmias

average = sum / n;

for(i=0;i<(length —1);i++){
outVec[i] = inVec[i]—average;
}
}

/*Function for calculating the number of times the slope changes sign in the vectorx/
int slopeChange(double *inVec, int length){

double diffVec[length —1];
double signVec[length —1];
double diffSignVec[length —2];
int signChanges = 0;
int i;
for(i=0;i<(length —1);i++){
diffVec[i] = inVec[2*xi+1]—inVec[2x1i];
if (diffVec[i] < 0){
signVec[i] = —1;
}
else if (diffVec[i] > 0){
signVec[i] = 1;
}
else {
signVec[i] = 0;
}
}
for(i=0;i<(length —2);i++){
diffSignVec[i] = fabs(signVec[2xi+1]-signVec[2x*i]);
if (diffSignVec[i]==2){
signChanges++;
}
}
return signChanges;

}

/*Function for calculating the number of times the array crosses the mean, or zero since
the mean will be zero, of the vectorx/
int meanCrossing(double *inVec, int length) {

int meanCrossed = 0;
int zeroFlag = 0;
int i;
for (i=0;i<(length —1);i++){
if (inVec[i]*inVec[i+1]<0){
meanCrossed ++;
}
else if (inVec[i]*inVec[i+1]==0){
zeroFlag = 1;
}
else{
if (zeroFlag == 1){
meanCrossed ++;
zeroFlag= 0;

}
}

return meanCrossed;

58

90

98

100

102

i

106

120

126

140

142

EMG Analysis and Recognition for HDI e David Nahmias

/*Function for calculating the variance of a vectorx/
double varianceCalc(double *inVec, int length){

}

double average;

double variance;

double meanSum = 0;

double varSum = 0;

double n = length;

int i;

for (i = 0; i < length; i++){
meanSum = meanSum + inVec[i];

}

average = meanSum / n;

for (i = 0; i < length; i++){
varSum = varSum + pow((inVec[i] — average), 2);
}
variance = varSum / n;
return variance;

/«Function applies an high and low pass filter to the vector and then returns the

void filterHiLow (double xinVec, double soutVec, int length){

variance of the high and low pass frequenciesx/

int newLength;
newLength = length — (7-1);

//From MATLAB: firpm

double low[7] = {-0.1195, 0.0001, 0.3133, 0.5002, 0.3133,
double hi[7] = {0.1195, -0.0001, —0.3133, 0.4998, —-0.3133,

double sumLow = 0.8878;
double sumHi = 0.1122;

double weightLow ;
double weightHi;

double varLow;
double varHi;

double lowPass[newLength];
double hiPass[newLength];

int i;
int j;
for (i=0;i<newLength;i++){
weightLow = 0;
weightHi = 0;
for(j=0;j<7;j++){
weightLow = weightLow + (low[j]*inVec[i+j]);
weightHi = weightHi + (hi[j]*inVec[i+j]);
}
lowPass[i] = weightLow;
hiPass[i] = weightHi;
}
varLow = varianceCalc (lowPass, newLength);
varHi = varianceCalc(hiPass ,newLength);
outVec[0] = varLow;
outVec[1] = varHi;

59

0.0001, —0.1195};
—0.0001, 0.1195};

144

146

150

160

162

164

166

168

N

EMG Analysis and Recognition for HDI e David Nahmias

/+*Function finds the location in the vector of the maximum valuex/
int maxLocation(double xoutputVec, int length){
double maximum;
maximum = outputVec[0];
int location = 0;
int c;
for (¢ = 1; ¢ < length; c++){
if (outputVec[c] > maximum) {
maximum = outputVec[c];
location = ¢;
}
}
return location;

}

/*Function finds the maximum value of a vectorx/
double maxValue(double xoutputVec, int length) {
double maximum;
maximum = outputVec[0];
int location = 0;
int c;
for (¢ = 1; ¢ < length; c++){
if (outputVec[c] > maximum) {
maximum = outputVec[c];
location = ¢;
}
}

return maximum;

5.5 MPBnnEval.c - From Results in Section

/%%

Generated by Multiple Back—Propagation Version 2.2.4

Multiple Back—Propagation can be freely obtained at http://dit.ipg.pt/MBP
*/

#include <math.h>

VES

inputs — should be an array of 16 element(s), containing the network input(s).

outputs — should be an array of 4 element(s), that will contain the network output(s).

Note : The array inputs will also be changed.Its values will be rescaled between —1 and
1.

*/

void MPBnnEval(double * inputs, double * outputs) {
double mainWeights;\\ARRAY INITIALIZED IN THE FOLLOWING APPENDIX
double * mw = mainWeights;
double hiddenLayerloutputs[20];

int c;

inputs[0] = —1.0 + (inputs[0] — 21.573288999999999) / 4287.211465999999700;
inputs[1] = —1.0 + (inputs[1] — 22.532620999999999) / 959.162792999999970;
inputs[2] = —1.0 + (inputs[2] — 14.000000000000000) / 16.500000000000000;
inputs[3] = —1.0 + (inputs[3] — 3.000000000000000) / 39.500000000000000;
inputs[4] = —1.0 + (inputs[4] — 7.401209000000000) / 2176.857930000000100;
inputs[5] = —1.0 + (inputs[5] — 8.623840000000000) / 945.550248000000010;

60

40

68

74

EMG Analysis and Recognition for HDI e David Nahmias

inputs[6]
inputs[7]
inputs[8]
inputs[9]
inputs[10]
inputs[11]
inputs[12]
inputs[13]

inputs[14] =

inputs[15] =

—1.0 + (inputs[6] — 14.000000000000000) / 16.500000000000000;
—1.0 + (inputs[7] — 2.000000000000000) / 37.000000000000000;
—1.0 + (inputs[8] — 32.803324000000003) / 790.981097500000030;
—-1.0 + (inputs[9] — 37.851123000000001) / 1588.695454500000100;
-1.0 (inputs[10] — 17.000000000000000) / 14.500000000000000;

+
—1.0 + (inputs[11] — 15.000000000000000) / 33.500000000000000;
—1.0 + (inputs[12] — 12.524685000000000) / 1522.454503000000200;
—1.0 + (inputs[13] — 14.716892000000000) / 1559.156945000000000;
—1.0 + (inputs[14] — 21.000000000000000) / 13.000000000000000;
—1.0 + (inputs[15] — 13.000000000000000) / 33.500000000000000;

hiddenLayerloutputs[0] = sow++;
for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[0] += sw++ * inputs[c];
hiddenLayerloutputs[0] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[0]));
hiddenLayerloutputs[1] = sw++;
for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[1] += smw++ * inputs[c];
hiddenLayerloutputs[1] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[1]));
hiddenLayerloutputs [2] = xmw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[2] += smw++ * inputs[c]
hiddenLayerloutputs[2] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[2]));

’

hiddenLayerloutputs[3] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[3] += smw++ % inputs[c]
hiddenLayerloutputs[3] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[3]));

’

hiddenLayerloutputs[4] = sow++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[4] += smw++ *x inputs[c];
hiddenLayerloutputs[4] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[4]));
hiddenLayerloutputs[5] = sxw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[5] += smw++ * inputs[c];
hiddenLayerloutputs[5] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[5]));
hiddenLayerloutputs[6] = xmw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[6] += smw++ * inputs[c];
hiddenLayerloutputs[6] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[6]));

hiddenLayerloutputs[7] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[7] += smw++ % inputs[c]
hiddenLayerloutputs[7] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[7]));

’

hiddenLayerloutputs[8] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[8] += smw++ x inputs[c]
hiddenLayerloutputs[8] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[8]));

’

hiddenLayerloutputs[9] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[9] += sw++ * inputs[c];
hiddenLayerloutputs[9] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[9]));
hiddenLayerloutputs[10] = smw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[10] += sw++ * inputs[c];
hiddenLayerloutputs[10] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[10]));
hiddenLayerloutputs[11] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[11] += smw++ * inputs[c];
hiddenLayerloutputs[11] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[11]));
hiddenLayerloutputs[12] = smw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[12] += smw++ * inputs[c];
hiddenLayerloutputs[12] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[12]));
hiddenLayerloutputs[13] = smw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[13] += smw++ * inputs[c];
hiddenLayerloutputs[13] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[13]));
hiddenLayerloutputs[14] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[14] += smw++ * inputs[c];
hiddenLayerloutputs[14] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[14]));
hiddenLayerloutputs[15] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[15] += smw++ * inputs[c];
hiddenLayerloutputs[15] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[15]));
hiddenLayerloutputs[16] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[16] += sw++ * inputs[c];
hiddenLayerloutputs[16] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[16]));

61

EMG Analysis and Recognition for HDI e David Nahmias

hiddenLayerloutputs[17]
for(c = 0; ¢ < 16; c++)
hiddenLayerloutputs[17]
hiddenLayerloutputs[18]
for(c = 0; ¢ < 16; c++)
hiddenLayerloutputs[18]
hiddenLayerloutputs[19]

= HWH+;
hiddenLayerloutputs[17] += sxw++ * inputs[c];
= 1.0 / (1.0 + exp(—hiddenLayerloutputs[17]));
= W+

hiddenLayerloutputs[18] += srw++ * inputs[c];
= 1.0 / (1.0 + exp(—hiddenLayerloutputs[18]));
= YW+

for(c = 0; ¢ < 16; c++)
hiddenLayerloutputs[19] =

hiddenLayerloutputs[19] += smw++ * inputs[c];
1.0 / (1.0 + exp(—hiddenLayerloutputs[19]));

outputs [0] = srw++;

for(c = 0; ¢ < 20; c++) outputs[0] += srw++ % hiddenLayerloutputs[c];
outputs[0] = 1.0 / (1.0 + exp(—outputs[0]));

outputs[1] = srw++;

for(c = 0; ¢ < 20; c++) outputs[1] += smw++ * hiddenLayerloutputs[c];
outputs[1] = 1.0 / (1.0 + exp(—outputs[1]));

outputs [2] = smw++;

for(c = 0; ¢ < 20; c++) outputs[2] += smw++ x hiddenLayerloutputs[c];
outputs[2] = 1.0 / (1.0 + exp(—outputs[2]));

outputs [3] = sw++;

for(c = 0; ¢ < 20; c++) outputs[3] += srw++ * hiddenLayerloutputs[c];
outputs[3] = 1.0 / (1.0 + exp(—outputs[3]));

outputs[0] = 0.000000000000000 + (outputs[0] — 0.000000) = 1.000000000000000;
outputs[1] = 0.000000000000000 + (outputs[1] — 0.000000) = 1.000000000000000;
outputs[2] = 0.000000000000000 + (outputs[2] — 0.000000) = 1.000000000000000;
outputs[3] = 0.000000000000000 + (outputs[3] — 0.000000) = 1.000000000000000;

5.5.1 mainWeights[] array from MPBnnEval.c - From Results in Section

mainWeights[] = {0.685057486267876, -1.003593845648203, -1.676608862226744, 2.759520572817846, -
1.976107508630466, -0.300397806065257, -1.833566392813919, 0.393651686027290, -0.791570874695809,
3.973442875797390, -0.877755604819427, 0.536933382723225, 1.499490216281518, 1.826144752791696,
1.816447300382206, -0.174516172006360, 2.029122838843685, -44.823880538328645, -0.067448670483561,
-1.215317142679038, -1.698089788637212, 1.630191445718890, 0.806198728759696, 0.128835153451791,
-0.228734368784205, -0.353276029818936, -1.848567547814230, -1.884502538306788, -0.012315113746165,
-0.325916819851736, -2.623195426310435, -38.081941942108976, 0.754381765612835, 0.818628784554373,
0.675791943569465, 1.785323478313909, 0.897168352562741, -5.763152038663192, -1.603692086085236,
0.029365814661941, -0.188353697214450, -1.901147563053155, 2.242399764271029, 0.045972869117599,
1.144191690451069, 0.689996850957407, -4.266455398177964, -2.358652729790622, -3.025679466115171,
2.081901291921557, -4.067890204334095, 5.250810665845856, -1.287667378884949, 0.996327022127673,
-3.215593434487294, 3.040226634247922, 0.775797861253517, 2.169073428657368, 0.514126058550671,
-1.890160749170135, 0.547415318323207, -1.703295072445366, -0.738535522233358, -0.675921097994960,
1.239632207453166, 1.982287908366938, 1.384455362674789, 1.222328251024730, -10.432879656963086,
-0.598379529744183, -1.683285251696423, 1.301311153494513, 8.851481008532719, 0.480614381499928,
-1.068100139509267, -10.003886064070269, 7.315733815509374, -5.770328952175156, 0.455406480616313,
-0.307703450310253, 4.520635256255350, 1.249564669695893, 0.239244942553280, -5.395171914089017,
-3.929409394484025, 2.376051826085683, 0.694159213010448, 1.249026849472953, -0.531920176489723,
-0.375507139962586, -0.025023480245558, 6.720226347966567, 0.208667272622319, 0.215267258071795,
1.962301221454270, -0.544511094067143, -0.144959346873187, 0.832291517453934, 0.955270277824269,
-7.533944025102121, -0.331179616835965, -0.976758945192899, 0.935163271085134, 0.071513823205666,
-19.474660327108314, -4.364297688541105, 9.411498531240691, 25.503248891215581, 5.678913177432258,
-5.964288703101865, -20.763476599762523, -1.514855154257174, -0.984142948706538, 1.787176915056193,

62

EMG Analysis and Recognition for HDI e David Nahmias

-1.918818477205228, -0.632610516537205, -28.533982119604740, -12.177883713464427, -3.493661789953968,
1.841690740465549, -1.377408413233161, -1.965838436968509, -3.132099277438348, 6.300793846974998,
0.517120565648646, 3.695398356822787, -0.087890156886894, -7.205321347002930, -0.679809721048382,
-1.239171044818355, -0.752917223625244, -0.783812752906245, 2.425783995523105, 0.759045036842516,
-2.284793359981405, -0.073026847717325, 0.676227054751294, -2.750189050028979, -1.705122636897508,
-12.910752809290347, 27.631801337657308, 1.500994623769449, 0.688713460870922, 14.700630063227681,
-22.289309760561466, 1.038239658760087, -2.548997547570192, 5.285363632416505, 5.963274049217061,
2.241199757213401, 2.558436426862659, -4.632851134345581, -27.852915154773285, 0.305652866273470,
1.070495070774060, 1.575939316116395, -4.278297152465886, 0.048533844122452, 0.492251473209713,
31.905437069288944, 5.570282528566866, 13.197882317313312, -1.975742790127589, 1.161087776277129,
9.733934114432229, 26.224172364450734, -1.798605197639050, -0.846438227574811, 7.636231185730157,
-0.295178886198835, 0.025124095678517, -0.579880857520154, -2.261306061073901, -1.412081057314887,
4.075319952964382, -0.061720714583674, 2.098617674357036, 0.750212507402547, 1.937432889213032,
-0.689410815647644, -3.378953149690740, 0.594075477393104, 2.032588831940989, 3.005900723006639,
3.076606627022861, -0.699679755810932, -2.542367621524663, 5.683225807598267, -1.064966242501702,
-2.791865008755474, -4.384765124638936, -0.877942064447205, -0.660487208774154, 1.823155631028940,
-2.315402533149195, -0.831426582101321, 1.361094888442151, -3.245891751969088, -1.798919421783587,
-0.588921482487698, 4.323756093932172, 3.824432028645134, 0.237610270221678, -1.293104343693255,
4.741155268262678, -1.904114865664002, -0.180684195269555, 0.522208846750896, -0.300256803135168,
1.054026154652748, 4.881785800022747, 0.016382901797972, 0.743472782799455, 0.229108289533166,
-3.684821179959983, 0.005190172156843, -0.378335705305012, 1.887913674108564, 2.004807040069288,
-0.597875123839909, -0.504966057405074, 1.550876028996906, -1.867805164911597, -0.930410868644463,
-0.362544841184606, 0.284172011991663, 0.867506701309391, 4.703004795287562, 0.066965985441227,
0.666858487989078, -6.755372711715438, -5.764172854207710, -0.136491374515942, -1.572384525388857,
4.768446578366890, 7.792785641590839, -0.000388190604450, -0.797706846306004, -6.837312235906400,
-0.383402743368204, 0.979482088400743, -1.942489946328174, 0.921118930352360, 0.251090651576643,
0.474365380216401, -1.186317179420349, -0.673175106219423, -8.593828074468492, -2.068926620192420,
0.185845407477266, -3.538290521262840, -1.870268993856328, 0.581770669954075, 1.577223441103127,
0.245795178147093, -8.157924707128929, 2.280704744970723, 0.342946719541682, -3.910667664613060,
-4.467098159905070, -0.906470628559765, -5.467201009223641, 2.737699080237925, -0.436040756714554,
-2.751220019407433, 2.166604090475928, -0.332360011770856, 4.119701674973683, -1.387306658054850,
-1.503227342773925, 0.337225781627659, 0.379643101898157, 3.206528771762287, 0.538784632366727,
2.035815138835933, -0.115118725771238, 0.027542935718282, -0.691806368825379, 4.213805017227664,
-1.619310067100398, 2.993913991309019, -1.110027940567203, -2.401290055549762, 1.097750207941063,
2.059889964582283, 0.291951010740415, 0.021009871562727, 0.523301343580218, 0.092153840735425,
-0.744370214455877, 1.201836947413143, 0.818701345453900, -2.438169814916017, 6.625546861602578,
2.057698805626764, 0.404151989425300, -0.810596612611141, -0.417001482418377, -2.263224200847616,
-1.112434018439531, -2.481887152761845, -5.493412840188150, -0.146517807605973, -1.961941892540544,
9.295504754768023, -0.689178084323587, 0.469541661616307, -0.628441773939000, 0.920579328930262,
-21.284085496690270, 11.420409660621774, 3.344858445371178, 4.026568188557498, -0.889681209493754,
6.473823258114644, 3.132240934634673, 0.123852668355637, 12.237856165375049, -16.681325278355374,
0.332214467182122, -0.669033601195795, 7.652479352172455, 1.230896328387997, -2.563091085309658,
0.513630989438070, -1.611824781019923, -0.660240611474350, 1.250993541691231, -0.208091212428763,
-4.448997032834758, -1.500212905406674, 0.586139129590036, 2.860195069292906, 1.600441269928579,
-0.343082605895435, 0.965863299195872, 0.150424946704961, -1.033629701613839, -0.452410322950436,
-0.220067156383811, -0.789410502942839, -3.154548006475654, 51.499516671634048, -3.754432804177846,
-25.271304132346856, 11.860051116233862, -9.471403772814437, 1.158911675559202, -6.456000427696317,
4.218408224499989, -15.397677271144568, 11.025180101622773, -15.477260366495228, -8.564109879875261,

63

EMG Analysis and Recognition for HDI e David Nahmias

-6.675919970037072, 26.985834298949875, 18.642277185087849, -24.349616689535079, 3.867264750129841,
-3.021778095602352, 12.294197653675246, -6.557067670977562, -4.800357848543951, -28.264999456324553,
-17.575354719930573, -5.787970513964607, 2.983097154757307, -17.946588357835033, 12.293603495741806,
0.258603746792891, -11.076955370327202, -0.319088555554144, 16.719150833145672, 18.644101987387845,
4.267747965615421, 88.311854131870248, -2.328805978785411, -3.730736934714884, -3.535873456306964,
0.499417169099167, 6.555612829056063, -32.242505955889605, 1.487911161724635, 13.147279057526045,
-42.205604404419596, 9.546783288426134, 0.146338643375272, -11.937382198715465, -52.230525946869989,
-3.058568472538358, -8.220793532302393, 10.303742562476405, -9.271978425450637, 9.126835711013809,
-3.840690585342728, -1.143172168868982, -32.937152117539732, -4.940861815337594, 13.418707402389666,
-9.874032664589759, -1.581527065601002, -10.933313240448390, 41.121469034294378, 2.911953754543154,
-24.825962197130632, -7.008868765826922, -9.619682766587031, 0.159367503682150, 4.068205562060452,
35.543548274371155, 2.409609647064563, 0.326821442220716, -3.945595721997502, 6.920025068663102,
-11.121028549358504, 0.095470249496158, 18.768988595654751, -103.241827218111200, 13.148238823328747,
-7.039137013075766, 5.761103538183644, 1.051643974298734, 4.356613090310721, -23.993861808503681};

5.6 MPBnnEval.c - From Results in Section

7| /%%
inputs — should be an array of 16 element(s), containing the network input(s).
outputs — should be an array of 4 element(s), that will contain the network output(s).

/%%

Generated by Multiple Back—Propagation Version 2.2.4

Multiple Back—Propagation can be freely obtained at http://dit.ipg.pt/MBP
*/

#include <math.h>

Note : The array inputs will also be changed.Its values will be rescaled between —1 and
1.
*/
void MPBnnEval(double * inputs, double * outputs) {
double mainWeights;\\ARRAY INITIALIZED IN THE FOLLOWING APPENDIX
double * mw = mainWeights;
double hiddenLayerloutputs[20];

int c¢;

inputs[0] = —1.0 + (inputs[0] — 21.573288999999999) / 4287.211465999999700;
inputs[1] = —1.0 + (inputs[1] — 22.532620999999999) / 959.162792999999970;
inputs[2] = —1.0 + (inputs[2] — 14.000000000000000) / 16.500000000000000;
inputs[3] = —1.0 + (inputs[3] — 3.000000000000000) / 39.500000000000000;
inputs[4] = —1.0 + (inputs[4] — 7.401209000000000) / 2176.857930000000100;
inputs[5] = —1.0 + (inputs[5] — 8.623840000000000) / 945.550248000000010;
inputs[6] = —1.0 + (inputs[6] — 14.000000000000000) / 16.500000000000000;
inputs[7] = —1.0 + (inputs[7] — 2.000000000000000) / 37.000000000000000;
inputs[8] = —1.0 + (inputs[8] — 32.803324000000003) / 790.981097500000030;
inputs[9] = —1.0 + (inputs[9] — 37.851123000000001) / 1588.695454500000100;
inputs[10] = —1.0 + (inputs[10] — 17.000000000000000) / 14.500000000000000;
inputs[11] = —1.0 + (inputs[11] — 15.000000000000000) / 33.500000000000000;
inputs[12] = —1.0 + (inputs[12] — 12.524685000000000) / 1522.454503000000200;
inputs[13] = —1.0 + (inputs[13] — 14.716892000000000) / 1559.156945000000000;
inputs[14] = —1.0 + (inputs[14] — 21.000000000000000) / 13.000000000000000;
inputs[15] = —1.0 + (inputs[15] — 13.000000000000000) / 33.500000000000000;

hiddenLayerloutputs[0] = sw++;
for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[0] += smw++ x inputs[c];
hiddenLayerloutputs[0] 1.0 / (1.0 + exp(—hiddenLayerloutputs[0]));
hiddenLayerloutputs[1] HIW++;
for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[1] += sw++ * inputs[c];

64

61

EMG Analysis and Recognition for HDI e David Nahmias

hiddenLayerloutputs[1] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[1]));
hiddenLayerloutputs[2] = sxmw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[2] += smw++ * inputs[c];
hiddenLayerloutputs[2] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[2]));
hiddenLayerloutputs[3] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[3] += smw++ x inputs[c];
hiddenLayerloutputs[3] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[3]));
hiddenLayerloutputs[4] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[4] += smw++ x inputs[c];
hiddenLayerloutputs[4] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[4]));
hiddenLayerloutputs[5] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[5] += sw++ * inputs[c];
hiddenLayerloutputs[5] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[5]));
hiddenLayerloutputs[6] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[6] += smw++ * inputs[c];
hiddenLayerloutputs[6] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[6]));
hiddenLayerloutputs[7] = xmw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[7] += smw++ * inputs[c];
hiddenLayerloutputs[7] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[7]));
hiddenLayerloutputs[8] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[8] += smw++ x inputs[c];
hiddenLayerloutputs[8] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[8]));
hiddenLayerloutputs[9] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[9] += smw++ *x inputs[c];
hiddenLayerloutputs[9] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[9]));
hiddenLayerloutputs[10] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[10] += smw++ * inputs[c];
hiddenLayerloutputs[10] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[10]));
hiddenLayerloutputs[11] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[11] += smw++ * inputs[c];
hiddenLayerloutputs[11] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[11]));
hiddenLayerloutputs[12] = xmw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[12] += smw++ * inputs[c];
hiddenLayerloutputs[12] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[12]));
hiddenLayerloutputs[13] = smw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[13] += smw++ * inputs[c];
hiddenLayerloutputs[13] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[13]));
hiddenLayerloutputs[14] = smw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[14] += sw++ * inputs[c];
hiddenLayerloutputs[14] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[14]));
hiddenLayerloutputs[15] = smw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[15] += smw++ * inputs[c];
hiddenLayerloutputs[15] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[15]));
hiddenLayerloutputs[16] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[16] += smw++ * inputs[c];
hiddenLayerloutputs[16] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[16]));
hiddenLayerloutputs[17] = smw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[17] += srw++ * inputs[c];
hiddenLayerloutputs[17] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[17]));
hiddenLayerloutputs[18] = smw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[18] += smw++ * inputs[c];
hiddenLayerloutputs[18] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[18]));
hiddenLayerloutputs[19] = sw++;

for(c = 0; ¢ < 16; c++) hiddenLayerloutputs[19] += smw++ * inputs[c];
hiddenLayerloutputs[19] = 1.0 / (1.0 + exp(—hiddenLayerloutputs[19]));
outputs [0] = srw++;

for(c = 0; ¢ < 20; c++) outputs[0] += smw++ * hiddenLayerloutputs[c];
outputs[0] = 1.0 / (1.0 + exp(—outputs[0]));

outputs[1] = srw++;

for(c = 0; ¢ < 20; c++) outputs[1] += srw++ % hiddenLayerloutputs[c];
outputs[1] = 1.0 / (1.0 + exp(—outputs[1]));

65

EMG Analysis and Recognition for HDI e David Nahmias

outputs [2] = smw++;

for(c = 0; ¢ < 20; c++) outputs[2] += sw++ * hiddenLayerloutputs[c];

outputs[2] = 1.0 / (1.0 + exp(—outputs[2]));

outputs [3] = sw++;

for(c = 0; ¢ < 20; c++) outputs[3] += smw++ * hiddenLayerloutputs[c];

outputs[3] = 1.0 / (1.0 + exp(—outputs[3]));

outputs[0] = 0.000000000000000 + (outputs[0] — 0.000000) = 1.000000000000000;

outputs[1] = 0.000000000000000 + (outputs[1] — 0.000000) = 1.000000000000000;

outputs[2] = 0.000000000000000 + (outputs[2] — 0.000000) = 1.000000000000000;

outputs[3] = 0.000000000000000 + (outputs[3] — 0.000000) = 1.000000000000000;
}

5.6.1 mainWeights[] array from MPBnnEval.c - From Results in Section

mainWeights[] = /-11.253214618377667, 1.405354677002241, -1.182751200141889, 2.277561189520991,
1.763158632423368, 0.684687747577315, -18.466525591333788, 1.836937988561259, 0.585166232198536,
3.371473581121434, 6.900868209699747, -1.538320296123229, -1.459701452846419, -3.985308713680459,
1.581106245051505, 1.529383609996363, 3.487162769821830, -8.175494727678975, 0.415087441860305,
-4.323719621694306, 2.367000374006180, -2.714826002833101, -0.503750729153865, -4.018795331205947,
3.249307035984373, 0.354824066340192, -4.247215119449519, -3.067244483621847, -0.616067739158539,
-3.353949733210090, 0.988123785600619, 4.285726449690609, -6.607689884276313, -2.398153718006349,
0.072474145016710, -3.806784212078085, 0.903744710825808, 2.683527721229612, -0.580011966663043,
-3.400123998036029, 0.044506628094318, 0.596245746808816, 3.449122583757569, -0.308705256433868,
-2.233383563318430, 0.650928965199364, -1.764892069283057, 4.227321738531777, 5.543186825674336,
1.157267188686691, -1.768850824604713, 4.849399587286367, -1.427099617861895, 0.532259370734713,
47.558925494472248, -22.476925369990891, -0.832185329777165, -3.271774416055841, 19.078813758499276,
-35.096983709908429, 18.361530093810661, -8.093619161996436, 7.644968287097925, 7.739239094892504,
2.284867436646646, 1.684394694361457, -10.998545725678042, -2.907031385853675, -58.252746382978437,
2.619785999108773, -19.558221810100569, -0.648042871124893, 2.746452818729318, -0.561371455015863,
-17.818510426446899, -0.688548142946740, 0.456730341583131, -22.245090136817058, -0.842389460747250,
1.283696198124405, 0.164120999211527, -1.917831539864210, -0.642921242438560, -0.063973056509560,
-0.795969863371034, -0.596165517989300, -1.803632149604503, 19.176613746030334, -18.859304802485003,
29.062888960978654, 0.353790612120144, -28.732251212013267, 2.327241134257889, -24.401866669567493,
9.331640538587468, -2.360838911945026, 27.818477582850996, 32.474648322249138, 1.221346542703764,
-0.497674061731299, 32.140461120150171, -18.051379810516131, -0.585996846850707, 7.760364640519376,
-0.335675148885665, 0.477559250813896, 4.535666980286793, 1.315611826188698, 11.609669679214740,
-1.685804725441409, -0.498964411986992, -3.538900684675560, -19.744093729831988, 1.600160423500295,
-6.587988000368772, 1.463316869540224, -1.137952616232421, 0.943425298697442, 3.241388455263011,
-5.055289902655334, -6.672919520348843, -0.616973183284566, -27.270822524858215, -6.336965184760834,
0.346652474866662, -8.881576015202187, -3.543147766200346, -11.274104597816450, -2.342208317882011,
-0.468565958805616, 6.262098308839680, -11.358089150315624, 1.142053618297381, -0.409739272802340,
2.893490986845031, -4.113337368723793, 2.629929299981558, -0.520976993648334, -0.130440504334296,
-9.259136394027157, -7.337530096163541, 0.128465902033073, -0.223325569190465, 11.712085733254593,
-4.069770072315802, 5.593710191006419, 1.474846298839452, -4.097565286591094, -5.378158134775157,
0.037717108717175, -2.570241878259667, -7.749663975901663, 9.410438138457144, 5.235514142908440,
-0.973164544882033, 1.645265378718355, 0.832066477041075, -3.720258731415364, 0.021934733561943,
7.658114727527002, 3.055152720023364, 4.255282829238984, 2.147581324346163, -0.216448157889054,
1.365672368247813, 1.011616983572298, 1.202486943438489, -1.107484399429273, 1.723543821480152,
-1.132370497316068, 4.909371664480418, -1.532717903084125, 1.829669924868184, 1.378432722201081,

66

EMG Analysis and Recognition for HDI e David Nahmias

-0.777631934256585, -0.466589455643995, 6.937398975881122, 0.687920770190908, 0.987133037935800,
-2.336788192512186, -2.850261528690506, -1.438332930050715, -1.807559740776733, 2.869521962796848,
-0.734597539842074, 0.300734317688178, -1.546418739736867, -6.439681154801157, -1.203799485336424,
2.259659393085389, 14.760395116782528, 0.667152959318119, 7.369923863713987, -0.614687572499752,
4.822294033190837, 10.427132955417896, -1.474026774387041, 16.118205254926441, 13.751533769508034,
-14.929330141348071, -11.335429946577598, -2.966487512901178, 10.726816078027834, -19.269964082681980,
-1.566346911136094, -2.876751875337904, -11.866267529750132, 0.478483927406223, 1.864697178321802,
3.255139361924961, 33.374551823882967, 0.202312535632734, 0.320449470780405, -13.900829922514907,
-47.671711937168659, -1.166577073746478, -2.483333716984405, 13.236207713736471, 26.000628748565241,
-0.423751281874246, -0.025479066803670, -3.866700014495997, 12.761612936288433, -1.983077150295160,
1.527536070927071, -44.943473972512407, 0.843630643491530, -13.381484465142844, -55.480992605872054,
0.873978387297013, 10.128304697851229, 2.131405732562643, 10.528968372702721, 2.480224592661095,
-3.768809348869870, -1.277103707891064, 1.339050476195807, 19.456076320903261, 2.888280247775007,
3.599502734784134, -16.735932233790670, -9.688079733825070, 10.091717128179500, 0.705479468883028,
-3.964951809137887, 9.255961926694013, -6.486383932902069, 4.066808066694938, -5.127722202216567,
-15.953754756252426, -1.858263493563977, 5.965828979556429, 9.177266742715737, 5.811577769566685,
10.326576485157000, 3.447228136257702, -19.964948426847673, 0.425228872584031, -4.016681496245288,
8.867060866003662, -0.032911206428359, 24.998097411190507, 2.797695031052204, -3.659865958862204,
-4.521924156930050, 2.212336174128684, 6.394589791407523, 9.276171099593071, -1.241300015110413,
-8.451143930838965, -0.165619985263837, -14.317510065079174, -0.598045890908657, 3.069412031969292,
3.687467217654200, 0.692879948102243, 0.057422056013353, -0.664266192905896, -1.699950883024146,
-0.291946268100390, 0.756033674983505, 5.128512693030983, 3.465817340361217, -0.811809903221358,
-1.847914205241645, -4.040798847617000, -10.555652988880869, -0.403545174447597, -1.232283557899639,
1.724003825045724, -1.698829732683582, -1.505822904943960, -20.828839048640823, 5.942372762379324,
-1.734110991227174, 2.782653415888373, -7.297417383444958, 15.653083737606725, 0.063919894989207,
-0.097589912401792, -10.888019047525924, 4.702536743432335, 2.742314967911190, 5.167187958096136,
-0.006174578401743, 3.476944247886013, 0.525827390498628, 0.553996386868137, -3.192742945376964,
6.396736412198708, -7.865053989676314, 1.734601093415611, 2.059723329855185, -17.106483326576232,
10.682458741698973, -2.136309856557695, -6.965904474144568, 14.783494754798935, -7.354173086471006,
5.141362154143047, 5.073335895082181, -1.775469186159960, -15.933516543426983, 1.594851044106998,
-0.502928852178154, 1.608704693100281, 18.920043981314659, 8.203841962655078, -0.521331680887361,
0.985623962264311, -6.510798797687107, 9.922492851442691, 2.777039218314766, 2.494193933027857,
2.109833312883039, -2.905418001268204, -1.366374860013884, -2.227735218212068, -0.724523167951651,
-15.841707076423573, -1.959782916063858, -0.766067721446295, 16.660110049090452, 10.672739123572137,
-3.679208244892513, 77.818773439970528, -3.022392263831677, 5.147541987331866, -1.000270975495277,
-10.482439417191106, -30.173584381075120, -10.863440555023303, 18.761118341585309, -48.690945885518964,
-8.100686624856985, -5.030713100642368, -5.663396981208430, 2.818298214542264, -2.776716786954450,
-7.125162807691914, -8.730952147081654, -6.246147465280541, -22.103726974156391, 28.791582991111564,
36.458724089408754, 5.073626993477267, -23.699872887264419, -0.266594435090565, 21.212670378166752,
4.019823302524465, -9.497299262533632, -14.736875906378980, 6.975875001685216, -16.208953045372922,
29.557908831579564, 1.738032029059101, 9.845546797097653, -4.683771635536272, -83.831350939350386,
12.903140769612197, 2.861680290833291, -7.003579084265959, 0.772209414281079, 45.331781221809628,
41.468666659576463, 92.620759556662023, 24.409511530980609, -66.817096577766648, 15.915800962284910,
-54.792083208445774, 21.363588066751344, -19.504173932986731, -48.558129768756423, -79.498561518917853,
-32.074725378451035, -61.961138378210507, 6.458821882292659, 18.244885370075050, -27.408286521109456,
-15.833270954772699, 26.955350344688693, 22.059577095335424, -18.375593694099695, 1.753451974404965,
-43.516648161912521, -38.717821554443475, -90.120162943052875, -24.168023945919941, -43.011743000298395,
-15.122925483117141, 53.135841737386876, -20.270962791773321, 17.901181697546580, 46.751122942678073,

67

EMG Analysis and Recognition for HDI e David Nahmias

77.649119518224950, 28.939908847824459, -100.998030722326060, -6.243115135324385, -17.654192647423574,
26.384680276131391, 12.666988152305956, -25.906945615500184, -21.109544620362232, 17.619410871179831/;

5.7 beaglebone_gpio.h

/*

2| beaglebone_gpio.h By: David Nahmias

Electromyography data acquisition and analysis program for recognizing electromyography
data via an Artificial Neural Network to drive GPIO signals.

4| Written by: David Nahmias

For Engineering 90 Senior Design project at Swarthmore College.

This code defines the memory locations of the GPIO in Mode 1 used in the main recognition
C file for HDI control.
8| x/

0| #ifndef _BEAGLEBONE_GPIO_H_
#define _BEAGLEBONE_GPIO_H_

#define GPIO1_START_ADDR 0x4804C000

11| #define GPIOI_END_ADDR 0x4804DFFF

#define GPIO1_SIZE (GPIO1_END_ADDR — GPIO1_START_ADDR)
16| #define GPIO_OE 0x134

#define GPIO_SETDATAOUT 0x194

15| #define GPIO_CLEARDATAOUT 0x190

0| #define GPIO8_11 (1<<13)
#define GPIO8_12 (1<<12)
»|#define GPIO8_15 (1<<15)
#define GPIO8_16 (1<<14)
2| #define GPIO8_26 (1<<29)

2| #define GPIO9_12 (1<<28)
#define GPIO9_14 (1<<18)
2| #define GPIO9_15 (1<<16)
#define GPIO9_16 (1<<19)
| #define GPIO9_23 (1<<17)

»| #define USRI_LED (1<<22)

#endif

5.8 startup.sh

#!/bin/bash

dtc O dtb —o BB-SPI1—-01-00A0.dtbo —b 0 —@ BB-SPI1—-01—-00A0. dts

3| cp BB=SPI1—01—-00A0.dtbo /lib/firmware/

echo BB-SPI1-01 > /sys/devices/bone_capemgr.*/slots

5| optargs=quiet drm.debug=7 capemgr.disable_partno=BB-BONELT-HDMI, BB-BONELT-HDMIN capemgr .
enable_partno=BB-SPI1-01

dtc O dtb —o BB-SPI0—-01-00A0.dtbo —b 0 —@ BB-SPI0—01—-00A0. dts

7| cp BB—SPI0 —01—-00A0. dtbo /lib/firmware/

echo BB-SPI0—-01 > /sys/devices/bone_capemgr.*/slots

optargs=quiet drm.debug=7 capemgr.disable_partno=BB-BONELT-HDMI, BB-BONELT-HDMIN capemgr .
enable_partno=BB-SPI0—01

68

EMG Analysis and Recognition for HDI e David Nahmias

depmod —a
echo 60 > /sys/class/gpio/export
echo high > /sys/class/gpio/gpio60/direction
i3 echo 1 > /sys/class/gpio/gpio60/value
echo 0 > /sys/class/gpio/gpio60/value

69

	Introduction
	Materials and Methods
	General System Diagram
	Acquisition of EMG Signal
	Hardware Acquisition of EMG Signals
	Software Acquisition of EMG Signals

	Analysis of EMG Signals
	EMG Software Architecture
	EMG Signal Characteristics

	Training and Application of Artificial Neural Networks
	Motivation and Theory of Artificial Neural Networks
	Training Artificial Neural Networks for EMG Recognition
	Applying Artificial Neural Networks for EMG signal Recognition

	Integration of Accelerometer and Gyroscope
	Integration of Human Device Interface

	Results
	Results with Four Hand Gestures
	Results with Four Hand Gestures with More Training

	Discussion
	Future Direction
	Conclusion

	Appendix
	Complete List of Materials
	HandGestureRec.c - Main Run File
	trainNNGesture.c
	classificationFunctions.c
	MPBnnEval.c - From Results in Section 3.1
	mainWeights[] array from MPBnnEval.c - From Results in Section 3.1

	MPBnnEval.c - From Results in Section 3.2
	mainWeights[] array from MPBnnEval.c - From Results in Section 3.2

	beaglebone_gpio.h
	startup.sh

