E91B Final Project:
Arduino-Based Controller for D] Software

Julian Leland
E91B, 2010

Project Outline

 Project: Build a hardware controller for Algoriddim
Software’s dJay program

— Allow control of basic interface functions of dJay — turntables
and mixer controls

— Implement control through MIDI over USB — dJay’s native
control method

Project Outline

Introduction to dJay/DJ software

Turntables

Speed/Pitch
Control

d"wm E e Crossfader

DRAQ SONG HERE

Equalizer

Effects

Not shown here:
*Window displaying iTunes music library
*Sampler — allows you to play short segments of audio via buttons

Project Outline

» Goals of Project

— Turntables: scratching, forward/backwardspin

Touch control — turntable controllers are only active when you touch
them, just like a real record

— Crossfader: manual crossfade, left-right autocrossfade,
selection of type and duration of crossfade
Feedback system?

— Play/Pause/Reverse Controls

— Volume, Pitch and EQ controls

How It Works

Arduino Mega

[Turntable Controllers ISR

AL

Other Controllers

Serial to MIDI converter: takes data coming in to serial port through USB, and tells
computer that it’s MIDI data.

Registers as a MIDI instrument

Not my creation — Mark Demers at SpikenzieLabs.com

How It Works

« How MIDI works
— Serial protocol

— Typically, a 3 byte message: 0x90 0x2E OxFF
First byte — note type and channel data
Second byte — note data
Third byte — velocity/setting data

— Different controls interpret instructions differently

8 = Note Off

9 = Note On

A = AfterTouch (ie, key pressure)
B = Control Change

C = Program (patch) change

D = Channel Pressure

E = Pitch Wheel

\. SWARTHMORE /

‘Hardware Overview

. Arduino Mega MORE MAGIC

Speed/Pitch Volume

Play/Pause

Turntables
Buttton .

Crossfader

Auto
Crossfade

Turntables use capacitive touch sensors to detect touches on platters and on central
hubs — platter scratches, hub seeks through song

MORE MAGIC cuts power to capacitive sensor chips — forces recalibration.

(Rl el)

SWARTHMORE

ode Overview

Arduino

Initialize Arduino
* Start serial, 57600 baud
«Start listening for interrupts

Main Loop
1. Check speed
ISR

. chn':uously 2. Check what buttons
update ;
o are pressed/where sliders Indicators
counts are

3. Send appropriate MIDI
data to computer

. Touch

Code Overview

« ISRs & Checking Speed o
— Encoders use quadrature output é Tl LE L

— ISR: every time there’s an edge, update the
number of counts

— Checking speed: read current encoder count, wait
25 ms, read current encoder count

Map into range from 0-63 if moving CCW or 65-127 if moving
cw

ISR method is higher resolution than simply looking at rising or falling edges.

1)
2)
3)

4)

Code Overview

Reading Capacitive Sensors/Buttons

Need to encode where we are in the touching process —
need to send Note On and Note Off commands

void checkTouch(int readChan, int *touch, int *chgTouch) {

if (analogRead(readChan) <= 200 && *touch == 0) {
*touch = 1;
*chgTouch = 1;

else if(analogRead(readChan) <= 200 && *touch == 1) {
*chgTouch = 0;

else if(analogRead(readChan) > 200 && *touch == 1) {
*touch = 0;
*chgTouch = 1;

else {

*chgTouch = 0;

If we weren’t touched previously, and now we are, then record that we ARE being
touched, and that this is a new and exciting experience for us.

If we were touched previously, and we’re still being touched, then record that
we’re still being touched, but it’s lost its initial glitz.

If we were touched previously, but all of a sudden we’re not anymore, then
complain! We didn’t know we had it so good until it was gone!

If we weren’t touched previously, and that’s not a new event, then nothing
happens.

10

Code Overview

» Reading Sliders/Dials
— Read voltage from wiper of potentiometer with ADC

— Map from voltage to MIDI with map()
void faderPos() {
voltage = analogRead(4);
curFader = map(voltage, 5, 550, 0, 127);
if ((curFader < (prevFader - 5)) || (curFader > (prevFader + 5))) {
Serial.print(0xB2, BYTE); // Note on, MIDI channel 3
Serial.print(0x08, BYTE); // Play controller 08
Serial.print(curFader, BYTE); // Controller setting
prevFader = curFader;
}
¥

— Some smoothing implemented to remove noise from low-
quality slide potentiometers

11

Code Overview

» Sending MIDI

— Turntables:

Touching: 0x90/0x80 (note on/off on correct channel — touch or
release turntable) — 0x2E — OxFF (unused)

Spinning: 0xBO (control change on correct channel) — 0x10 (coarse pan
control) — 0x___ (speed)

— Buttons:
0x90 — 0x__ — OxFF (unused)
— Sliders:

0xBO0 (control change on correct channel) — 0x__ (slider number) —
0x___ (position)

All data is sent via serial using Serial.print() command

12

13

Did It Work?

« Control Latency

§oocy @ e g [} p o8BI 000y Swp ¢ W 4T 0 11w @ soce @ B £ 278 1003 Sop O L

Zﬁﬂz
¥ ,

Latency is average 103 ms — 4x latency of serial-MIDI
converter alone.

|
' W M WM/ Nlm l ifW

Industry standard for latency is < 10ms — should be less than 50 ms

Probably due to clunky Arduino code

14

Did It Work?

e Problems

— Final Product
Lack of precision in control
Capacitive touch design is hard!
— Production process
Lack of communication/documentation
Supply issues

15

Future Work

More Controls!
— Samplers, EQ, Cue Points, Looping, Sync/Beatmatch
— Visual feedback for non-tactile sliders

« More resilient systems
— Packaged product — allow for transport

« Lower latency — have the Arduino present to computer as MIDI
device

» Learn how to DJ

16

Conclusion

« Thanks to:
— Prof. Cheever, Ed Jaoudi for help with project

— Frederik Seiffert at Algoriddim Software for assistance with
MIDI communication

— Bourns, Inc. and ALPS for component samples

» Questions?

17

