

Determine whether or not sophisticated control systems are needed

Need to replace gear wheels with electronic linkage

Lead = distance traversed by a single rotation of a screw

Pitch is same as lead for single-thread screw, which most screws are.

In the interests of time, I elected to use an existing state-space model rather than develop my own – helps me avoid dealing with cutting dynamics.

State model taken from paper by Ward, Ralston and Stottman

Zero-feedback system between spindle motor and carriage drive motor – carriage runs at simple proportional rate to spindle

Additionally, MATLAB code was written to calculate TPI and pitch error

With model built, I now needed to determine how accurate the model was, how much I can control the "output" in terms of TPI, and what sort of thread error I could expect to see there

I then began modifying turning parameters to try to alter the cutting behavior.

As expected, increasing drive motor velocity exerts too much force on the spindle \rightarrow makes it turn backwards, not a real result

However, lowering cutting force (analogous to cutting depth) and increasing cutting speed works – what a real machinist would have to do

ASME Standard B1.1 specifies lower error for only 3A threads of 40 TPI and up

- Results
 - Simulation output is similar to other experiments
 - Lathe model is realistically "controllable"
 - Initial tests show that pitch error will be negligible for zerofeedback system
- Future Work
 - Simplify interface
 - Tune for my lathe
 - Determine relationship between Fc and depth of cut
 - Apply to building an electronic leadscrew!

