

Monitoring System for a Laundry System with

eZ430-RF2500 Development Kit

E90 Senior Design Project

David Kwon

Department of Engineering

Advised by Professor Molter

May 08, 2009

Abstract

Monitoring system for a laundry room can be used effectively by students
from wasting their valuable resources such as time, energy, and focus. The system
will make the current status of washers and dryers available online so that students
will be prevented from making multiple meaningless trips to a laundry room. This
report outlines all the details of circuit designs that are used in this project as well
as eZ430-RF2500 development kit, which is a crucial tool that the project uses to
transmit information wirelessly.

2 | P a g e

Table of Contents

1. Introduction ... 3
2. A Monitoring System Design... 4

2.1. Designing a System Based on Several Assumptions 4
2.2. Project Design .. 4
2.3. eZ430-RF 2500 Development Kit, Simpliciti, and Temperature Sensor
Demo Program... 5
2.4. OPT 101 – Monolithic Photodiode and Single-Supply Transimpedance
Amplifier ... 8
2.5. Sensor Circuit Design for Washer and Dryer... 9
2.6. Project Difficulty and Limitation .. 13
2.7. Programming Design ... 16

3. Apparatus Set-Up .. 17
4. Results .. 19

4.1. Numerical Results .. 19
4.2. Results via HyperTerminal .. 20
4.3. Results via MATLAB ... 20
4.4. Results via Webpage .. 21

5. Conclusion / Suggested Future Work .. 22
6. Acknowledgements .. 23
7. Appendices ... 24

Appendix A. Access Point Code in C .. 24
Appendix B. End Device Code in C... 32
Appendix C. MATLAB Programming .. 36
Appendix D. HTML code source : Main Page... 43
Appendix E. HTML code source : Top Frame .. 44
Appendix F. HTML code source : Bottom Frame .. 45

3 | P a g e

1. Introduction

Life is tough for college students. Academic work makes life harder. Practical affairs,

though usually not very mentally challenging, are also trying because of the time

they consume. One of these affairs is laundry. Doing laundry is not hard, but finding

available washers and dryers in a laundry room becomes a daunting task during

busy nights and weekends. Many students sometimes find themselves stuck in the

laundry room with unavailable washers and dryers and have to make multiple trips

to the room to find out if they become available. Some students, including the author

of this paper, have to bring their laundry basket back to the dormitory, which makes

the overall experience of doing laundry less enjoyable. Of course, not all students are

frequently subjected to laundry room inconveniences, but most students have

experienced this problem during their academic years.

Figure 1. A picture of the LED indicator panels on washer and dryer. Top) Washer Display Panel,
Bottom) Dryer Panel

In order to avoid such an event, a monitoring system becomes necessary.

Such a system will help students avoid making multiple meaningless trips to the

laundry room, thus saving them invaluable time and effort. However, how can the

system be built without physically tampering washers and dryers? The main

purpose of this project is to implement a system that will not require a user to

tamper with the devices. An external wireless device will be built by monitoring

changes that occur externally while the washers and dryers are in operation. For

example, the washers and dryers that are installed in Parrish have LED lights as

seen in Figure 1. These lights indicate whether the machines are on or off. The

4 | P a g e

lights also indicate in which washing cycle the washer is currently operating or in

which drying mode the dryer is currently running. By monitoring these LED lights,

one can build a laundry monitoring system without physically tampering the

washers and dryers. In order to monitor the LED light changes, an OPT101, a

monolithic photodiode and single-supply transimpedance amplifier, was used, and

eZ430-RF2500 development kit was used as a mode of wireless data transmission.

This report will include an explanation of how the laundry room monitoring

system was designed. The report will briefly go over several assumptions made

about the system and write about the electronic components and circuitry designs

that were used in this project. Then, conclusion and suggested future work will be

presented followed by results.

2. A Monitoring System Design

2.1. Designing a System Based on Several Assumptions

In this project, an assumption is made that all washers and dryers that are installed

in Swarthmore dormitories are the same. This means that there is an explicit

underlying assumption that all washers and dryers on Swarthmore campus have the

exact LED light panels. Another assumption is the LED lights installed on the

washers and dryers are functional. It is possible that some LED lights are out of

service. Since the project depends on the LED lights, non-functioning LED lights can

be problematic. For the purpose of this project, a consideration of such lights will be

disregarded when designing the monitoring system.

2.2. Project Design

5 | P a g e

Figure 2. A basic scheme of the monitoring system

A basic scheme of the monitoring system is seen in Figure 2. The trigger mechanism

in this system is the LED light. When the washers and dryers are off, the LED lights

are off as well. Once the machines start to operate, so do the LED lights. In order to

detect this light change, a photodiode is used in this project. It will be installed near

the LED lights to monitor them. Since each machine has three LED lights, three

photodiode sensors will be needed. Then, the outcome of this event will need to be

transmitted by a wireless sensor. This wireless sensor will receive and transmit data

to an appropriate device, likely a computer, which will use the data to update

information and possibly publish it online.

2.3. eZ430-RF 2500 Development Kit, Simpliciti, and Temperature Sensor Demo

Program

Figure 3. eZ430-RF2500 development tool kit (Left: access point, Right: end device)

6 | P a g e

eZ430-RF2500 is a USB-based wireless development kit unit developed by Texas

Instruments. The kit includes two target boards. One target board is called an

access point, the gateway that is connected to computer via USB connection and

receives an incoming data from an end device. The device, another target board, is

the board that collects information from a sensor and wirelessly transmits the

information to the access point.

Each target board uses a MSP430F2274 microcontroller. The microcontroller

belongs to the MSP 430 family, which is manufactured by Texas Instruments. MSP

430 has been designed specifically for wireless data transmission. Therefore, it uses

ultra-low-power. Also, the target board uses a CC2250, a transceiver manufactured

by Texas Instruments, and has a built-in temperature sensor. The transceiver

operates at 2.4 GHz. A unique feature about eZ430-RF2500 is its USB debugging

interface. This debugging interface allows users to debug each target board more

conveniently. Each board has 18 accessible pins for development purposes. Although

each pin can technically be altered for various development purposes, some of them

have specific functions. For example, Pin 1 and Pin 2, which are used in the monitor

system, are designed as ground and supply voltage. Pin 3, which is another Pin used

in this project, is considered as a general I/O, or it can be used as an analog input

just as it is used in this project. In this project, the output that will be resulted by

LED lights will be connected to Pin 3. It means the output coming from the

photodiode sensors will be connected to Pin 3 as an input.

eZ430-RF 2500 is capable of using various wireless network protocols. One of

them is XBee, which has been a popular choice of wireless network protocols for

many Swarthmore students in the past with their E90 projects. However, instead of

using XBee, Simpliciti, a protocol developed by Texas Instruments, was used.

Simpliciti is simple and is capable of various wireless designs. One can use the

protocol to make end devices behave as if they were in an ad-hoc network.

7 | P a g e

Figure 4. Simpliciti Network

In this project, data transmission is strictly allowed between end devices and

access points as seen in Figure 4. This means an end device will only allow

transmitting a datum to an access point, not to another end device nearby. Also, the

reason why Simpliciti was chosen to be the network protocol was the convenience.

eZ430-RF2500 kit includes a demonstration program called eZ430-RF2500

Temperature Sensor Program.

Figure 5. An image of eZ430-RF2500 temperature sensor program

8 | P a g e

As seen in Figure 5, the development kit includes the executable program

that displays the temperature that is collected by the temperature sensor installed

on the target board. With the program, the develop kit provides helpful sample

programs of the temperature sensor network for both access point and end device in

C, and the programs use Simpliciti. It was deemed too adventurous to explore the

option of using XBee as a wireless network protocol; Simpliciti was chosen to be used

as the network protocol. Time was limited in this project, and switching the network

protocol from Simpliciti to XBee seemed unnecessary, given that Simpliciti was

already confirmed to be functional with the demo temperature program.

2.4. OPT 101 – Monolithic Photodiode and Single-Supply Transimpedance Amplifier

Figure 6. OPT 101 (image from TME Electronics)

OPT 101, which is also known as the monolithic photodiodes and single-supply

transimpedance amplifier, is used a photo sensor. It will detect whether an LED

light is on or off in this project. A single-supply voltage between 2.7 and 36 V

powers OPT 101. The maximum supply voltage with eZ430-RF2500 is 3 V, which

makes OPT 101 a suitable photo sensor in this project.

 As a photodiode sensor, OPT 101 is very sensitive to light. With room light

provided by fluorescent light bulbs, OPT 101 outputs as high as 70% of its maximum

9 | P a g e

output. This leaves a very small space for the observation in changes of voltage

values. Therefore, the output voltage with ambient light should be lowered. In this

project, this is achieved by building a small cube made out of a black sheet of paper.

The cube will cover the entire surface of OPT101 and shield ambient light.

OPT 101 has a built-in amplification. Therefore, no amplifier needs to be

built in order to amplify the generally-considered weak “results” from diodes. In

addition, the built-in amplifier is actually a transimpedance amplifier, which

converts current to voltage. Therefore, the generated output will be voltage, meaning

the voltage will be produced when a light is detected by OPT 101. The output voltage

from OPT 101 then will be connected to Pin 3 of the end device for data transmission.

2.5. Sensor Circuit Design for Washer and Dryer

In this project, op-amps, operational amplifiers, were used to average output voltage

that is produced by OPT 101 and to provide voltage amplification. Voltage

amplification was used to monitor different washing cycles such as washing and

spinning. TLV 2772, a Texas Instruments product, was used in this project. TLV

2772 is called the Dual 2.7-V High Slew Rate Rail-To-Rail Operational Amplifier.

Like OPT101, it also uses a single-supply between 2.7 and 5.5 V. Its supply voltage

is also a match with the eZ430-RF 2500 supply.

As briefly noted in the previous section, an end device of eZ430-RF2500 is

supplied by 2 AAA batteries. This means its supply is a unipolar supply. So, the

feature Rail-To-Rail that TLV 2772 has becomes crucial in this project. Rail-To-Rail

op-amps like TLV 2772 can output voltages near both supply nails. In addition, TLV

2772 is extremely easy to work with. With the supply voltage being single-supply,

non-inverting configuration was used in this project.

10 | P a g e

Figure 7. Non-inverting amplifier

A simple non-inverting configuration of op-amp is seen in Figure 7. In non-

inverting configuration, gain is defined as
in

out

V
V = 1+

1

2

R
R (Equation 1). In order to

average output voltage by using this configuration, a passive voltage averager needs

to be built first. This can easily be done by connecting each voltage of interest with

resistors in parallel. The output voltage from this passive network is the average of

all the voltages, which are summed at the common node. Then, the average output

can be fed into the positive terminal of op-amp as inV as seen in Figure 8. Now, if 1R

has much more resistance than 2R , then the resistance ratio from Eq. 1 becomes

approximately zero. Then, gain will approximately be equal to 1. This translates into

the following:
in

out

V
V =1. Since inV is

3
321 VVV ++ , outV must be

3
321 VVV ++ (Equation 2) as

well. With this set-up, voltages that are collected by three OPT 101s installed on

each LED lights can now be averaged out. This means whenever one of the LED

lights goes on, then the average value of output voltage will also increase as well.

Figure 8. Non-inverting amplifier as a voltage averager

11 | P a g e

For the dryer, only one LED light will be activated once the machine starts

operating. A circuit design is shown in Figure 9.

Figure 9. A non-inverting configuration of circuit design for the dryer, where R1 is much greater than
R2

For the washer, the circuit design requires a little more work. Out of three

LED lights, two LED lights can be on at the same time. The “add softener” light may

come on with the Washing cycle LED light. However, this “add softener” light is

ignored in this experiment for the following reason. It is likely that not many

students will take advantage of this feature. On the other hand, indicating different

washing cycles seems to be a nice feature for students because it indicates whether

the washing operation is soon to be terminated. For example, “spinning cycle”

generally indicates the last phase of washing cycle. This information will allow

students to prepare for their trip to a laundry room. However, there is a limitation

in this project, which will be discussed in the next section.

The limitation is only one output voltage can be transmitted. How exactly

does this affect the laundry system? Here is an example. Let’s say OPT 101 outputs

12 | P a g e

50 mV with no LED on and outputs 100 mV with the LED light on. Here is what

happens.

Table 1. A table of how the average output changes with one LED light on (the LED 2 “add softener”
light is dependent on LED 1. This table only looks at the case where only one LED light is on. Since a
case when only LED 2 is on never exists, the average output voltage for this case does not exist)

 All LED
 lights off

LED 1 (washing
cycle) on

LED 2 (add
softener*) on

LED 3 (spinning
cycle) on

Average
output voltage

50mV 66.6mV 66.6mV

With only one output voltage data set transmittable, this configuration will not

differentiate the cycles between washing and spinning. An expected outcome from

having either LED 1 or 2 on is the same. In order to produce a different outcome

value, an amplifier is built for one of the LED lights. In this case, LED 3, which is

installed for spinning cycle, is chosen for the amplifier. The gain of this amplifier

was chosen as 7.8, which was large enough to differentiate the average output

voltage when LED 1 is on. Here is the result.

Table 2. A table of how the average output changes with one LED light on with a non-inverting
amplifier for LED 3 with a gain of 7.8 (the LED 2 “add softener” light is dependent on LED 1. This
table only looks at the case where only one LED light is on. Since a case when only LED 2 is on never
exists, the average output voltage for this case does not exist)

 All LED
 lights off

LED 1 (washing
cycle) on

LED 2 (add
softener*) on

LED 3 (spinning
cycle) on

Average
output voltage

50mV 66.6mV 293.3mV

As seen in Table 2, the expected average output voltage value when LED 3 is on is

higher than the expected average voltage value when LED 1 is on. A circuit scheme

is seen in Figure 10.

13 | P a g e

Figure 10. A non-inverting configuration of the circuit design for the washer, where R1 is much greater
than R2

2.6. Project Difficulty and Limitation

Although C programming codes for the access point and end device were used, there

were slight program modifications that were required for this project. For

programming modification, IAR Embedded Workbench, which was a software

included in this development kit, was used. IAR Embedded Workbench was also

used to compile and build a program on each target board. Some of the modifications

were made with the demo programs. First, the demo programs output temperatures

in two different modes: verbose and minimal modes. The output data from verbose

mode can be seen in Figure 11 and 12.

Figure 11. A typical data transmission in verbose mode displaying node, temperature in Fahrenheit,
battery voltage, strength, and RE indicator (to show whether or not a received packet has gone through
a Range Extender, which can be ignored in this project).

 Minimal mode is simple, but a useful/powerful way to place some of the data

acquired by eZ430-RF2500. By using software like Java, C, or even MATLAB, one

14 | P a g e

can put the information into arrays, and conveniently choose an array of interest. In

this project, the modification was made with the battery information.

Figure 12. A typical data transmission in minimal mode displaying node, temperature in Fahrenheit,
battery voltage, strength, and RE indicator.

In this project, verbose mode is completely discarded. The programming codes

involved with the mode are erased. Here is the reason: MATLAB will be used to

collect information. When importing data, the data that include non-integers will be

difficult to compare and analyze numerically in MATLAB. Therefore, only minimal

mode is allowed so that integer values can be collected into arrays. As seen in

Figures 11 and 12, a comma will be used as a delimiter.

 Besides the difficulty with dealing with non-integer values in MATLAB,

another problem arises when one uses the temperature demo program. As seen in

Figures 11 and 12, there are a limited number of data that can be transmitted by

using the demo program. The number of transferrable data fields did not change for

the following reason. The structures of the temperature sensor program were

delicate. Therefore, it was feared that the integrity of the program codes would be

broken when the data algorithms and structures were altered. This meant the only

way to transmit the average output voltage from washers and dryers was to replace

the battery voltage information with the average output voltage. There was another

limitation that was associated with the limited availability of transmittable data.

How does the program correctly identify if an incoming message was sent out by the

washer or the dryer?

The node, which can be seen in Figures 11 and 12 only as HUB0, is assigned

by Simpliciti based on the order of transmission. One may think an end device

“$001” installed on a washer will always carry the node “$001” so that “$001” will

always be associated with that washer. However, this isn’t true. If the data

transmission of “$001” was followed by the transmission of “$002,” then the node of

“$001” will actually be “$002.” Therefore, an identifier was needed to indicate

15 | P a g e

whether the end device was installed on the dryer or the washer. There was

only one data field remaining to be modified: temperature. The default program read

the value from the temperature sensor installed on the eZ430-RF2500 target board.

A slight modification in the programming was made so that the value could be used

to identify between the washer and the dryer. For example, a value of 0 was applied

to the temperature data field for the washer, and it produced a value of 32 while a

value of 30 was applied to the temperature data field for the dryer, and it resulted in

37.

16 | P a g e

2.7. Programming Design

Figure 13. A program flowchart in MATLAB

17 | P a g e

The programming design is seen in Figure 13, which shows the flowchart of how the

programming in MATLAB works. First, MATLAB finds if the used COM port is open.

Since the access point is connected via USB, the communication that is made

between the access point and end device can be collected by reading off the

appropriate COM port the Simpliciti protocol uses. If the COM port is not open or

available, then the program tries again to make sure the port is not available. If the

port is open or becomes available (open), then the next flow can proceed. Now, the

data transmission begins. As it turned out, reading COM port data from MATLAB

was a little harder than expected. For some reason, MATLAB would sometimes omit

or add extra erroneous information, which changes the sizes of arrays. Therefore,

the program checks if the collected set of arrays has a proper number of indices. If it

does, then the next procedure can proceed. There will be three ways to identify the

washer or the dryer. If an identifier indicates that the incoming data was sent by

node “#01” and had a value of “32” in the temperature data field, then it is the

washer. If the node had a value of “37” in the temperature data field, then it is the

dryer. Sometimes, MATLAB will have an erroneous value that is neither 32 nor 37.

If this error ever happens, then the flow needs to be re-directed to the beginning of

the flowchart. Once the flow reaches its end, then the chart repeats.

3. Apparatus Set-Up

The exploration of this project was done in a laboratory, not in a real laundry room.

The basic problem was all the circuit components were installed on a breadboard.

This made the circuits physically inaccessible. In order to simulate the LED light

panel settings on the dryer and washer, an alternate LED light panel was designed

to simulate a real laundry room setting. Pictures of the apparatus set-up can be seen

in Figures 14, 15, and 16. In Figure 14, a small black paper cube that mentioned in

an earlier section of the report can be seen. The cube houses both OPT 101 and LED

light. In Figure 15, two switches for the washer and dryer can be seen along with

eZ430-RF2500. Figure 16 provides a clear picture of the set-up as a whole.

18 | P a g e

Figure 14. Set-up from close-up

Figure 15. Set up from birdview

19 | P a g e

Figure 16. Set-up from sideview

4. Results

4.1. Numerical Results

The following set of values was recorded when LED light was on/off simulating real

washers and dryers.

Table 3. A table of results collected by the sensors installed on washer and dryer

Average output
voltage\Light

All LED
off

LED 1 on; LED
2 and 3 off

LED 2 on; LED 1
and 3 off

LED 3 on; LED 1
and 2 off

Dryer 29.4 mV 73.5 mV 79.1 mV 60.4 mV
Washer 51.1 mV 83.3 mV 142 mV

For the dryer, the average output voltage behaved as expected: the voltage value

was a lot higher with one of the LED lights turning on. However, the average output

voltages slightly varied from case to case. This is the case because the sensitivities of

OPT 101 vary. Also, the sizes of punctured holes on top of each paper cube were

different. Even a slightest amount of ambient light that travels through the small

20 | P a g e

holes can make a subtle difference. However, the difference caused by this problem

did not have a significant effect on the overall results.

 For washer, the results were as expected. With LED 3 on, the average output

voltage was higher than the one produced with LED 1 on. However, the expected

gain from LED 3, which was 7.8, was not observed. The actual gain was somewhat

lower. However, this problem did not also have a significant effect on the overall

results.

4.2. Results via HyperTerminal

Figure 17. An image of the data transmission that can be seen via HyperTerminal

A record of data transmission can be seen via using HyperTerminal. Instead of using

MATLAB to read the COM port, HyperTerminal was used in this lab to monitor the

average output voltages from OPT 101 and temperature identifier. Figure 17 shows

the set of data collected from end devices “$001” and “$002” and an access point

“$HUB0.” In this case, “$001” is installed on the dryer since its temperature shows a

value of 37. “$002” is installed on the washer, given that the temperature value is 32.

4.3. Results via MATLAB

As seen in the Figure, the MATLAB program displays the message as well as the set

of data values.

21 | P a g e

Figure 18. An image of how the program displays in MATLAB

Each end device will have its individual message identifying which device it

is installed on and indicating the current status of the machine. Inside the MATLAB

programming code, the messages will individually be saved to text files (*.txt) so

that they can be viewed on web browser.

4.4. Results via Webpage

In order to display the results online, the MATLAB code needs to run on a server.

This means the current directory of MATLAB needs to be changed to a server, which

requires permission to access the server. Then, a simple webpage can be written

such as the one seen in Figure 19. The webpage divides into two frames: top and

bottom. The top frame displays basic information with instructions. The bottom

frame displays the status.

22 | P a g e

Figure 19. An image of how the webpage displays the status of washer and dryer

5. Conclusion / Suggested Future Work

All the knowledge learned from taking electric circuit courses and computer science

were integrated into this E90 project. From creating a circuit design to making

proper decisions to execute, this senior project as a whole showed how I grew and

matured at Swarthmore while studying engineering. In the end, the monitoring

system for a laundry room was successfully developed with basic, and yet functional,

features.

 For future work, an actual implementation is sought. To do so, designing a

case that will house the circuits with eZ430-RF2500 is desirable. Also, producing an

executable program is desired as well. Since the current program depends on

MATLAB, it will not be able to run on the machines without MATLAB. In addition,

the current website can be improved by becoming more user-friendly and user-

interactive.

23 | P a g e

6. Acknowledgements

I would personally like to thank Professor Molter for giving me an opportunity to

work with her. This project was an exciting journey for me, and I hope Professor

Molter feels the same. I would like to thank Professor Molter for her patience and

trust in me with this project. I would also like to thank Professor Cheever for

introducing me to the eZ430-RF2500 development tool. This wireless development

tool was an integral part of my project, and without Professor Cheever’s help, this

laundry monitoring system would have never been developed. Also, I would like to

thank Professor Carr Everbach for providing me the idea of how to initialize my

MATLAB program. Lastly, I would like to thank Mr. Ed Jaoudi for ordering all the

circuitry parts that were used in this project.

24 | P a g e

7. Appendices

Appendix A. Access Point Code in C

//**
// eZ430-RF2500 Temperature Sensor Access Point
//
// Description: This is the Access Point software for the eZ430-2500RF
// Temperature Sensing demo
//
//
// L. Westlund
// Version 1.02
// Texas Instruments, Inc
// November 2007
// Built with IAR Embedded Workbench Version: 4.09A
//**
//Change Log:
//**
//Version: 1.02
//Comments: Changed Port toggling to abstract method
// Removed ToggleLED
// Fixed comment typos/errors
// Changed startup string to 1.02
//Version: 1.01
//Comments: Added support for SimpliciTI 1.0.3
// Changed RSSI read method
// Added 3 digit temperature output for 100+F
// Changed startup string to 1.01
//Version: 1.00
//Comments: Initial Release Version
//**

//* Modified by David Kwon for E90 Project
//* All the modifications are noted in the program

#include "bsp.h"
#include "mrfi.h"
#include "bsp_leds.h"
#include "bsp_buttons.h"
#include "nwk_types.h"
#include "nwk_api.h"
#include "nwk_frame.h"
#include "nwk.h"

#include "msp430x22x4.h"
#include "vlo_rand.h"

#define MESSAGE_LENGTH 3
void TXString(char* string, int length);
void MCU_Init(void);
void transmitData(int addr, signed char rssi, char msg[MESSAGE_LENGTH]);
void transmitDataString(char addr[4],char rssi[3], char msg[MESSAGE_LENGTH]);
void createRandomAddress();

25 | P a g e

//data for terminal output
const char splash[] = {"\r\n--\r\n ****\r\n **** eZ430-
RF2500\r\n ******o**** Temperature Sensor Network\r\n********_///_**** Copyright
2007\r\n ******/_//_/***** Texas Instruments Incorporated\r\n ** ***(__/***** All rights
reserved.\r\n ********* Version 1.02\r\n *****\r\n ***\r\n---------------------------------------
-----------\r\n"};

__no_init volatile int tempOffset @ 0x10F4; // Temperature offset set at production
__no_init volatile char Flash_Addr[4] @ 0x10F0; // Flash address set randomly

// reserve space for the maximum possible peer Link IDs
static linkID_t sLID[NUM_CONNECTIONS];
static uint8_t sNumCurrentPeers;

// callback handler
static uint8_t sCB(linkID_t);

// work loop semaphores
static uint8_t sPeerFrameSem;
static uint8_t sJoinSem;
static uint8_t sSelfMeasureSem;

// mode data verbose = default, deg F = default
char verboseMode = 1;
char degCMode = 0;

void main (void)
{
 addr_t lAddr;
 bspIState_t intState;

 WDTCTL = WDTPW + WDTHOLD; // Stop WDT
 {
 // delay loop to ensure proper startup before SimpliciTI increases DCO
 // This is typically tailored to the power supply used, and in this case
 // is overkill for safety due to wide distribution.
 volatile int i;
 for(i = 0; i < 0xFFFF; i++){}
 }
 if(CALBC1_8MHZ == 0xFF) // Do not run if cal values are erased
 {
 volatile int i;
 P1DIR |= 0x03;
 BSP_TURN_ON_LED1();
 BSP_TURN_OFF_LED2();
 while(1)
 {
 for(i = 0; i < 0x5FFF; i++){}
 BSP_TOGGLE_LED2();
 BSP_TOGGLE_LED1();
 }
 }

 BSP_Init();

 if(Flash_Addr[0] == 0xFF &&
 Flash_Addr[1] == 0xFF &&
 Flash_Addr[2] == 0xFF &&
 Flash_Addr[3] == 0xFF)

26 | P a g e

 {
 createRandomAddress(); // set Random device address at initial startup
 }
 lAddr.addr[0]=Flash_Addr[0];
 lAddr.addr[1]=Flash_Addr[1];
 lAddr.addr[2]=Flash_Addr[2];
 lAddr.addr[3]=Flash_Addr[3];
 SMPL_Ioctl(IOCTL_OBJ_ADDR, IOCTL_ACT_SET, &lAddr);

 MCU_Init();
 //Transmit splash screen and network init notification
 TXString((char*)splash, sizeof splash);
 TXString("\r\nInitializing Network....", 26);

 SMPL_Init(sCB);

 // network initialized
 TXString("Done\r\n", 6);

 // main work loop
 while (1)
 {
 // Wait for the Join semaphore to be set by the receipt of a Join frame from a
 // device that supports and End Device.

 if (sJoinSem && (sNumCurrentPeers < NUM_CONNECTIONS))
 {
 // listen for a new connection
 SMPL_LinkListen(&sLID[sNumCurrentPeers]);
 sNumCurrentPeers++;
 BSP_ENTER_CRITICAL_SECTION(intState);
 if (sJoinSem)
 {
 sJoinSem--;
 }
 BSP_EXIT_CRITICAL_SECTION(intState);
 }

 // if it is time to measure our own temperature...
 if(sSelfMeasureSem)
 {
 char msg [6];
 char addr[] = {"HUB0"};
 char rssi[] = {"000"};
 int degC, volt;
 volatile long temp;
 int results[2];

 ADC10CTL1 = INCH_10 + ADC10DIV_4; // Temp Sensor ADC10CLK/5
 ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON + ADC10IE + ADC10SR;
 for(degC = 240; degC > 0; degC--); // delay to allow reference to settle
 ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start
 __bis_SR_register(CPUOFF + GIE); // LPM0 with interrupts enabled
 results[0] = ADC10MEM;

 ADC10CTL0 &= ~ENC;

 ADC10CTL1 = INCH_11; // AVcc/2
 ADC10CTL0 = SREF_1 + ADC10SHT_2 + REFON + ADC10ON + ADC10IE + REF2_5V;

27 | P a g e

 for(degC = 240; degC > 0; degC--); // delay to allow reference to settle
 ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start
 __bis_SR_register(CPUOFF + GIE); // LPM0 with interrupts enabled
 results[1] = ADC10MEM;
 ADC10CTL0 &= ~ENC;
 ADC10CTL0 &= ~(REFON + ADC10ON); // turn off A/D to save power

 // oC = ((A10/1024)*1500mV)-986mV)*1/3.55mV = A10*423/1024 - 278
 // the temperature is transmitted as an integer where 32.1 = 321
 // hence 4230 instead of 423
 temp = results[0];
 degC = (((temp - 673) * 4230) / 1024);
 if(tempOffset != 0xFFFF)
 {
 degC += tempOffset;
 }

 temp = results[1];
 volt = (temp*25)/512;

 msg[0] = degC&0xFF;
 msg[1] = (degC>>8)&0xFF;
 msg[2] = volt;
 transmitDataString(addr, rssi, msg);
 BSP_TOGGLE_LED1();
 sSelfMeasureSem = 0;
 }

 // Have we received a frame on one of the ED connections?
 // No critical section -- it doesn't really matter much if we miss a poll
 if (sPeerFrameSem)
 {
 uint8_t msg[MAX_APP_PAYLOAD], len, i;

 // process all frames waiting
 for (i=0; i<sNumCurrentPeers; ++i)
 {
 if (SMPL_Receive(sLID[i], msg, &len) == SMPL_SUCCESS)
 {
 ioctlRadioSiginfo_t sigInfo;
 sigInfo.lid = sLID[i];
 SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_SIGINFO, (void *)&sigInfo);
 transmitData(i, (signed char)sigInfo.sigInfo[0], (char*)msg);
 BSP_TOGGLE_LED2();
 BSP_ENTER_CRITICAL_SECTION(intState);
 sPeerFrameSem--;
 BSP_EXIT_CRITICAL_SECTION(intState);
 }
 }
 }
 }
}

/*--
*
--*/
void createRandomAddress()
{
 unsigned int rand, rand2;

28 | P a g e

 do
 {
 rand = TI_getRandomIntegerFromVLO(); // first byte can not be 0x00 of 0xFF
 }
 while((rand & 0xFF00)==0xFF00 || (rand & 0xFF00)==0x0000);
 rand2 = TI_getRandomIntegerFromVLO();

 BCSCTL1 = CALBC1_1MHZ; // Set DCO to 1MHz
 DCOCTL = CALDCO_1MHZ;
 FCTL2 = FWKEY + FSSEL0 + FN1; // MCLK/3 for Flash Timing Generator
 FCTL3 = FWKEY + LOCKA; // Clear LOCK & LOCKA bits
 FCTL1 = FWKEY + WRT; // Set WRT bit for write operation

 Flash_Addr[0]=(rand>>8) & 0xFF;
 Flash_Addr[1]=rand & 0xFF;
 Flash_Addr[2]=(rand2>>8) & 0xFF;
 Flash_Addr[3]=rand2 & 0xFF;

 FCTL1 = FWKEY; // Clear WRT bit
 FCTL3 = FWKEY + LOCKA + LOCK; // Set LOCK & LOCKA bit
}

/*--
*
--*/
void transmitData(int addr, signed char rssi, char msg[MESSAGE_LENGTH])
{
 char addrString[4];
 char rssiString[3];
 volatile signed int rssi_int;

 addrString[0] = '0';
 addrString[1] = '0';
 addrString[2] = '0'+(((addr+1)/10)%10);
 addrString[3] = '0'+((addr+1)%10);
 rssi_int = (signed int) rssi;
 rssi_int = rssi_int+128;
 rssi_int = (rssi_int*100)/256;
 rssiString[0] = '0'+(rssi_int%10);
 rssiString[1] = '0'+((rssi_int/10)%10);
 rssiString[2] = '0'+((rssi_int/100)%10);

 transmitDataString(addrString, rssiString, msg);
}

/*--
*
--*/
void transmitDataString(char addr[4],char rssi[3], char msg[MESSAGE_LENGTH])
{
 char temp_string[] = {" XX.XC"};
 int temp = msg[0] + (msg[1]<<8);

 if(!degCMode)
 {
 temp = (((float)temp)*1.8)+320;
 temp_string[5] = 'F';
 }
 if(temp < 0)

29 | P a g e

 {
 temp_string[0] = '-';
 temp = temp * -1;
 }
 else if(((temp/1000)%10) != 0)
 {
 temp_string[0] = '0'+((temp/1000)%10);
 }
 temp_string[4] = '0'+(temp%10);
 temp_string[2] = '0'+((temp/10)%10);
 temp_string[1] = '0'+((temp/100)%10);

 // David's change: Verbose Mode disabled. Reason: When reading output from MATLAB,
 // The textstring needs to output "numbers" only.
 // When in verbose mode, it displays numbers with characters, which is not good for MATLAB.
 //
 // Therefore, verbose mode disabled for my purpose.

 char output_short[] = {"\r\n$ADDR,-XX.XC,V.C,RSI,N#"};

 output_short[19] = rssi[2];
 output_short[20] = rssi[1];
 output_short[21] = rssi[0];

 output_short[8] = temp_string[0];
 output_short[9] = temp_string[1];
 output_short[10] = temp_string[2];
 output_short[11] = temp_string[3];
 output_short[12] = temp_string[4];
 output_short[13] = temp_string[5];

 output_short[15] = '0'+(msg[2]/10)%10;
 output_short[17] = '0'+(msg[2]%10);
 output_short[3] = addr[0];
 output_short[4] = addr[1];
 output_short[5] = addr[2];
 output_short[6] = addr[3];
 TXString(output_short, sizeof output_short);
}

/*--
*
--*/
void TXString(char* string, int length)
{
 int pointer;
 for(pointer = 0; pointer < length; pointer++)
 {
 volatile int i;
 UCA0TXBUF = string[pointer];
 while (!(IFG2&UCA0TXIFG)); // USCI_A0 TX buffer ready?
 }
}

/*--
*
--*/
void MCU_Init()

30 | P a g e

{
 BCSCTL1 = CALBC1_8MHZ; // Set DCO
 DCOCTL = CALDCO_8MHZ;

 BCSCTL3 |= LFXT1S_2; // LFXT1 = VLO
 TACCTL0 = CCIE; // TACCR0 interrupt enabled
 TACCR0 = 12000; // ~1 second
 TACTL = TASSEL_1 + MC_1; // ACLK, upmode

 P3SEL |= 0x30; // P3.4,5 = USCI_A0 TXD/RXD
 UCA0CTL1 = UCSSEL_2; // SMCLK
 UCA0BR0 = 0x41; // 9600 from 8Mhz
 UCA0BR1 = 0x3;
 UCA0MCTL = UCBRS_2;
 UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**
 IE2 |= UCA0RXIE; // Enable USCI_A0 RX interrupt
 __enable_interrupt();
}
/*--
* Runs in ISR context. Reading the frame should be done in the
* application thread not in the ISR thread.
--*/
static uint8_t sCB(linkID_t lid)
{
 if (lid)
 {
 sPeerFrameSem++;
 }
 else
 {
 sJoinSem++;
 }
 // leave frame to be read by application.
 return 0;
}

/*--
* ADC10 interrupt service routine
--*/
#pragma vector=ADC10_VECTOR
__interrupt void ADC10_ISR(void)
{
 __bic_SR_register_on_exit(CPUOFF); // Clear CPUOFF bit from 0(SR)
}

/*--
* Timer A0 interrupt service routine
--*/
#pragma vector=TIMERA0_VECTOR
__interrupt void Timer_A (void)
{
 sSelfMeasureSem = 1;
}

/*--
* USCIA interrupt service routine
--*/
#pragma vector=USCIAB0RX_VECTOR
__interrupt void USCI0RX_ISR(void)

31 | P a g e

{
 char rx = UCA0RXBUF;
 if (rx == 'V' || rx == 'v')
 {
 verboseMode = 1;
 }
 else if (rx == 'M' || rx == 'm')
 {
 verboseMode = 0;
 }
 else if (rx == 'F' || rx == 'f')
 {
 degCMode = 0;
 }
 else if (rx == 'C' || rx == 'c')
 {
 degCMode = 0;
 }
}

32 | P a g e

Appendix B. End Device Code in C

//**
// eZ430-RF2500 Temperature Sensor End Device
//
// Description: This is the Access Point software for the eZ430-2500RF
// Temperature Sensing demo
//
//
// L. Westlund
// Version 1.02
// Texas Instruments, Inc
// November 2007
// Built with IAR Embedded Workbench Version: 4.09A
//**
//Change Log:
//**
//Version: 1.02
//Comments: Changed Port toggling to abstract method
// Removed ToggleLED
// Fixed comment typos/errors
// Changed startup string to 1.02
//Version: 1.01
//Comments: Added support for SimpliciTI 1.0.3
// Changed RSSI read method
// Added 3 digit temperature output for 100+F
// Changed startup string to 1.01
//Version: 1.00
//Comments: Initial Release Version
//**

// Some of the contents were taken from TI's Temperature Demo Program
// for eZ430-RF2500.
// Edited by David Kwon for E90 Project

#include "bsp.h"
#include "mrfi.h"
#include "nwk_types.h"
#include "nwk_api.h"
#include "bsp_leds.h"
#include "bsp_buttons.h"
#include "vlo_rand.h"

void linkTo(void);
void MCU_Init(void);

__no_init volatile int tempOffset @ 0x10F4; // Temperature offset set at production
__no_init volatile char Flash_Addr[4] @ 0x10F0; // Flash address set randomly

void createRandomAddress();

void main (void)
{
 addr_t lAddr;
 WDTCTL = WDTPW + WDTHOLD; // Stop WDT
 {
 // delay loop to ensure proper startup before SimpliciTI increases DCO
 // This is typically tailored to the power supply used, and in this case

33 | P a g e

 // is overkill for safety due to wide distribution.
 volatile int i;
 for(i = 0; i < 0xFFFF; i++){}
 }
 if(CALBC1_8MHZ == 0xFF) // Do not run if cal values are erased
 {
 volatile int i;
 P1DIR |= 0x03;
 BSP_TURN_ON_LED1();
 BSP_TURN_OFF_LED2();
 while(1)
 {
 for(i = 0; i < 0x5FFF; i++){}
 BSP_TOGGLE_LED2();
 BSP_TOGGLE_LED1();
 }
 }

 // SimpliciTI will change port pin settings as well
 P1DIR = 0xFF;
 P1OUT = 0x00;
 P2DIR = 0x27;
 P2OUT = 0x00;
 P3DIR = 0xC0;
 P3OUT = 0x00;
 P4DIR = 0xFF;
 P4OUT = 0x00;

 BSP_Init();

 if(Flash_Addr[0] == 0xFF &&
 Flash_Addr[1] == 0xFF &&
 Flash_Addr[2] == 0xFF &&
 Flash_Addr[3] == 0xFF)
 {
 createRandomAddress(); // set Random device address at initial startup
 }
 lAddr.addr[0]=Flash_Addr[0];
 lAddr.addr[1]=Flash_Addr[1];
 lAddr.addr[2]=Flash_Addr[2];
 lAddr.addr[3]=Flash_Addr[3];
 SMPL_Ioctl(IOCTL_OBJ_ADDR, IOCTL_ACT_SET, &lAddr);
 BCSCTL1 = CALBC1_8MHZ; // Set DCO after random function
 DCOCTL = CALDCO_8MHZ;

 BCSCTL3 |= LFXT1S_2; // LFXT1 = VLO
 TACCTL0 = CCIE; // TACCR0 interrupt enabled
 TACCR0 = 12000; // ~ 1 sec
 TACTL = TASSEL_1 + MC_1; // ACLK, upmode

 // keep trying to join until successful. toggle LEDS to indicate that
 // joining has not occurred. LED3 is red but labeled LED 4 on the EXP
 // board silkscreen. LED1 is green.
 while (SMPL_NO_JOIN == SMPL_Init((uint8_t (*)(linkID_t))0))
 {
 BSP_TOGGLE_LED1();
 BSP_TOGGLE_LED2();;
 __bis_SR_register(LPM3_bits + GIE); // LPM3 with interrupts enabled
 }

34 | P a g e

 // unconditional link to AP which is listening due to successful join.
 linkTo();
}

void createRandomAddress()
{
 unsigned int rand, rand2;
 do
 {
 rand = TI_getRandomIntegerFromVLO(); // first byte can not be 0x00 of 0xFF
 }
 while((rand & 0xFF00)==0xFF00 || (rand & 0xFF00)==0x0000);
 rand2 = TI_getRandomIntegerFromVLO();

 BCSCTL1 = CALBC1_1MHZ; // Set DCO to 1MHz
 DCOCTL = CALDCO_1MHZ;
 FCTL2 = FWKEY + FSSEL0 + FN1; // MCLK/3 for Flash Timing Generator
 FCTL3 = FWKEY + LOCKA; // Clear LOCK & LOCKA bits
 FCTL1 = FWKEY + WRT; // Set WRT bit for write operation

 Flash_Addr[0]=(rand>>8) & 0xFF;
 Flash_Addr[1]=rand & 0xFF;
 Flash_Addr[2]=(rand2>>8) & 0xFF;
 Flash_Addr[3]=rand2 & 0xFF;

 FCTL1 = FWKEY; // Clear WRT bit
 FCTL3 = FWKEY + LOCKA + LOCK; // Set LOCK & LOCKA bit
}
void linkTo()
{
 linkID_t linkID1;
 uint8_t msg[3];

 // keep trying to link...
 while (SMPL_SUCCESS != SMPL_Link(&linkID1))
 {
 __bis_SR_register(LPM3_bits + GIE); // LPM3 with interrupts enabled
 BSP_TOGGLE_LED1();
 BSP_TOGGLE_LED2();
 }

 // Turn off all LEDs
 if (BSP_LED1_IS_ON())
 {
 BSP_TOGGLE_LED1();
 }
 if (BSP_LED2_IS_ON())
 {
 BSP_TOGGLE_LED2();
 }
 while (1)
 {
 // This part of the program is greatly edited
 // in order to display the output voltage

 //volatile long temp;
 int degC;
 volatile long sample;
 int voltage;

35 | P a g e

 //signed int output; //output of the voltage on PIN 3
 SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_SLEEP, "");
 __bis_SR_register(LPM3_bits+GIE); // LPM3 with interrupts enabled
 SMPL_Ioctl(IOCTL_OBJ_RADIO, IOCTL_ACT_RADIO_AWAKE, "");

 P2DIR |= 0x01; // OPEN PORT 2 and PIN 3 (PIN 3 = P2.1)
 ADC10AE0 = 0x01; // Enabling Port for the ADC10
 ADC10CTL0 = ADC10SHT_2 + ADC10ON + ADC10IE + ADC10SR; //Intiaiting A to D conversion
 ADC10CTL1 = INCH_0; //Enabling Channel A0
 for(degC = 240; degC > 0; degC--); // delay to allow reference to settle
 ADC10CTL0 |= ENC + ADC10SC; //sampling and conversion initiate
 __bis_SR_register(CPUOFF + GIE); //LPM0 with interrupts enable
 sample = ADC10MEM; // store binary results from ADC10MEM
 ADC10CTL0 &= ~ENC; //
 ADC10CTL0 &= ~(REFON + ADC10ON); // turn off A/D to save power

 voltage = (sample*25)/51; //measuring average output voltage
 // the denominator value can be changed to amplify the voltage value
 msg[0]=30; //this also can be assigned to 0 if the machine is washer.
 //Dryer is assigned with the value of 30.
 msg[1]=0; //does not use in this program (from temperatuer demo program)
 msg[2]=voltage; //store average output voltage

 void linkTo(void);
 void MCU_Init(void);

 if (SMPL_SUCCESS == SMPL_Send(linkID1, msg, sizeof(msg)))
 {
 BSP_TOGGLE_LED2();
 }
 else
 {
 BSP_TOGGLE_LED2();
 BSP_TOGGLE_LED1();
 }
 }
}

/*--
* ADC10 interrupt service routine
--*/
#pragma vector=ADC10_VECTOR
__interrupt void ADC10_ISR(void)
{
 __bic_SR_register_on_exit(CPUOFF); // Clear CPUOFF bit from 0(SR)
}

/*--
* Timer A0 interrupt service routine
--*/
#pragma vector=TIMERA0_VECTOR
__interrupt void Timer_A (void)
{
 __bic_SR_register_on_exit(LPM3_bits); // Clear LPM3 bit from 0(SR)
}

36 | P a g e

Appendix C. MATLAB Programming

s = serial('COM5','BAUD',9600); % Create serial object (PORT Dependent)

pause(0.0);

fopen(s);
%fprintf(s, 'Device Name:Temperature:Voltage:Byte:Other');

status = get(s, 'Status'); %obtain the status information of the serial port

pause(0.0);
counter = 0;
data = fscanf(s);

pause(0.0);

message01 = '1'; %create an initial message
message02 = '2'; %create an initial message

datarcvd01 = 0; %if data is received, the the value changes to 1
datarcvd02 = 0; %if data is received, the the value changes to 1

while(status == 'open') % check if the port is open (available)
 data = fscanf(s); % scan the data

 %properly name the data fields
 [device,type,voltage,strength,other] = strread(data,'%s%s%3.2f%d%s','delimiter',',');
 device = char(device);
 type = char(type);
 voltage = voltage;

 %check if all the indices have the required sizes
 %if not, then the repeat
 if(size(data) ~= [1 23] | size(device) ~= [1 5] | size(type) ~= [1 2])
 error = 1;
 while(error == 1)
 data = fscanf(s);
 [device,type,voltage,strength,other] = strread(data,'%s%s%3.2f%d%s','delimiter',',');
 device = char(device);
 type = char(type);
 voltage = voltage;
 if(size(data) ~= [1 23] | size(device) ~= [1 5] | size(type) ~= [1 2])
 error = 1;
 else
 error = 0;
 end
 end

 else
 ;
 end
 pause(0.0);

 while(device == '$HUB0') % if your device is access point (HUB0), the re-read it
 data = fscanf(s); %gets out of the loop

37 | P a g e

 [device,type,voltage,strength,other] = strread(data,'%s%s%3.2f%d%s','delimiter',',');
 device = char(device);
 type = char(type);
 voltage = voltage;
 if(size(data) ~= [1 23] | size(device) ~= [1 5] | size(type) ~= [1 2])
 error = 1;
 while(error == 1)
 data = fscanf(s);
 [device,type,voltage,strength,other] = strread(data,'%s%s%3.2f%d%s','delimiter',',');
 device = char(device);
 type = char(type);
 voltage = voltage;
 if(size(data) ~= [1 23] | size(device) ~= [1 5] | size(type) ~= [1 2])
 error = 1;
 else
 error = 0;
 end
 end

 else
 ;
 end
 pause(0.0);
 end;

 %once the previous while loops, we know that the transmitted data comes
 %from end; device

 while((datarcvd01 == 0) || (datarcvd02 == 0))

 if(device == '$0001')
 voltage01 = voltage;
 type = type(1:2);

 %display the information
 if(type == '32')
 if(voltage01 < 1.3)
 message01 = ['The wireless sensor #' device(4:5) ' is installed on washer. The washer is
currently available.'];
 datarcvd01 = 1;
 elseif(voltage01 > 1.3 & voltage01 < 2.2)
 message01 = ['The wireless sensor #' device(4:5) ' is installed on washer. The washer is not
available; it is currently in washing cycle.'];
 datarcvd01 = 1;
 else
 message01 = ['The wireless sensor #' device(4:5) ' is installed on washer. The washer is not
available; it is currently in spinning cycle.'];
 datarcvd01 = 1;
 end;
 else
 if(voltage01 < 1.0)
 message02 = ['The wireless sensor #' device(4:5) ' is installed on dryer. The dryer is
currently available.'];
 datarcvd01 = 1;
 else
 message02 = ['The wireless sensor #' device(4:5) ' is installed on dryer. The dryer is
currently not available; it is currently in operation.'];
 datarcvd01 = 1;
 end;

38 | P a g e

 end;
 data = fscanf(s); %gets out of the loop
 [device,type,voltage,strength,other] = strread(data,'%s%s%3.2f%d%s','delimiter',',');
 device = char(device);
 type = char(type);
 voltage = voltage;
 if(size(data) ~= [1 23] | size(device) ~= [1 5] | size(type) ~= [1 2])
 error = 1;
 while(error == 1)
 data = fscanf(s);
 [device,type,voltage,strength,other] = strread(data,'%s%s%3.2f%d%s','delimiter',',');
 device = char(device);
 type = char(type);
 voltage = voltage;
 if(size(data) ~= [1 23] | size(device) ~= [1 5] | size(type) ~= [1 2])
 error = 1;
 else
 error = 0;
 end
 end
 else
 ;
 end
 pause(0.0);
 conter = 1;

 elseif(device == '$0002')

 voltage02 = voltage;
 type = type(1:2);
 if(type == '32')
 if(voltage02 < 1.0)
 message01 = ['The wireless sensor #' device(4:5) ' is installed on washer. The washer is
currently available. '];
 datarcvd02 = 1;
 elseif(voltage02 > 1.3 & voltage02 < 2.2)
 message01 = ['The wireless sensor #' device(4:5) ' is installed on washer. The washer is not
available; it is currently in washing cycle.'];
 datarcvd02 = 1;
 else
 message01 = ['The wireless sensor #' device(4:5) ' is installed on washer. The washer is not
available; it is currently in spinning cycle.'];
 datarcvd02 = 1;
 end;
 else
 if(voltage02 < 1.0)
 message02 = ['The wireless sensor #' device(4:5) ' is installed on dryer. The dryer is
currently available.'];
 datarcvd02 = 1;
 else
 message02 = ['The wireless sensor #' device(4:5) ' is installed on dryer. The dryer is
currently not available; it is currently in operation.'];
 datarcvd02 = 1;
 end;
 end;
 data = fscanf(s); %gets out of the loop
 [device,type,voltage,strength,other] = strread(data,'%s%s%3.2f%d%s','delimiter',',');
 device = char(device);
 type = char(type);

39 | P a g e

 voltage = voltage;
 if(size(data) ~= [1 23] | size(device) ~= [1 5] | size(type) ~= [1 2])
 error = 1;
 while(error == 1)
 data = fscanf(s);
 [device,type,voltage,strength,other] = strread(data,'%s%s%3.2f%d%s','delimiter',',');
 device = char(device);
 type = char(type);
 voltage = voltage;
 if(size(data) ~= [1 23] | size(device) ~= [1 5] | size(type) ~= [1 2])
 error = 1;
 else
 error = 0;
 end
 end

 else
 ;
 end
 pause(0.0);
 counter = 1;

 else
 data = fscanf(s);
 [device,type,voltage,strength,other] = strread(data,'%s%s%3.2f%d%s','delimiter',',');
 device = char(device);
 type = char(type);
 voltage = voltage;
 if(size(data) ~= [1 23] | size(device) ~= [1 5] | size(type) ~= [1 2])
 error = 1;
 while(error == 1)
 data = fscanf(s);
 [device,type,voltage,strength,other] = strread(data,'%s%s%3.2f%d%s','delimiter',',');
 device = char(device);
 type = char(type);
 voltage = voltage;
 if(size(data) ~= [1 23] | size(device) ~= [1 5] | size(type) ~= [1 2])
 error = 1;
 else
 error = 0;
 end
 end

 else
 ;
 end
 pause(0.0);

 while(device == '$HUB0') % if your device is access point (HUB0), the re-read it
 data = fscanf(s); %gets out of the loop
 [device,type,voltage,strength,other] = strread(data,'%s%s%3.2f%d%s','delimiter',',');
 device = char(device);
 type = char(type);
 voltage = voltage;
 if(size(data) ~= [1 23] | size(device) ~= [1 5] | size(type) ~= [1 2])
 error = 1;
 while(error == 1)

40 | P a g e

 data = fscanf(s);
 [device,type,voltage,strength,other] = strread(data,'%s%s%3.2f%d%s','delimiter',',');
 device = char(device);
 type = char(type);
 voltage = voltage;
 if(size(data) ~= [1 23] | size(device) ~= [1 5] | size(type) ~= [1 2])
 error = 1;
 else
 error = 0;
 end
 end

 else
 ;
 end
 pause(0.0);
 end;

 if(device == '$0001')
 voltage01 = voltage;
 type = type(1:2);
 if(type == '32')
 if(voltage01 < 1.0)
 message01 = ['The wireless sensor #' device(4:5) ' is installed on washer. The washer is
currently available.'];
 datarcvd01 = 1;
 elseif(voltage01 > 1.3 & voltage01 < 2.2)
 message01 = ['The wireless sensor #' device(4:5) ' is installed on washer. The washer is
not available; it is currently in washing cycle.'];
 datarcvd01 = 1;
 else
 message01 = ['The wireless sensor #' device(4:5) ' is installed on washer. The washer is
not available; it is currently in spinning cycle.'];
 datarcvd01 = 1;
 end;
 else
 if(voltage01 < 1.0)
 message02 = ['The wireless sensor #' device(4:5) ' is installed on dryer. The dryer is
currently available.'];
 datarcvd01 = 1;
 else
 message02 = ['The wireless sensor #' device(4:5) ' is installed on dryer. The dryer is
currently not available; it is currently in operation.'];
 datarcvd01 = 1;
 end;
 end;
 data = fscanf(s); %gets out of the loop
 [device,type,voltage,strength,other] = strread(data,'%s%s%3.2f%d%s','delimiter',',');
 device = char(device);
 type = char(type);
 voltage = voltage;
 if(size(data) ~= [1 23] | size(device) ~= [1 5] | size(type) ~= [1 2])
 error = 1;
 while(error == 1)
 data = fscanf(s);
 [device,type,voltage,strength,other] = strread(data,'%s%s%3.2f%d%s','delimiter',',');
 device = char(device);
 type = char(type);

41 | P a g e

 voltage = voltage;
 if(size(data) ~= [1 23] | size(device) ~= [1 5] | size(type) ~= [1 2])
 error = 1;
 else
 error = 0;
 end
 end

 else
 ;
 end
 pause(0.0);
 counter = 1;

 elseif(device == '$0002')
 voltage02 = voltage;
 type = type(1:2);
 if(type == '32')
 if(voltage02 < 1.0)
 message01 = ['The wireless sensor #' device(4:5) ' is installed on washer. The washer is
currently available.'];
 datarcvd02 = 1;
 elseif(voltage02 > 1.3 & voltage02 < 2.2)
 message01 = ['The wireless sensor #' device(4:5) ' is installed on washer. The washer is
not available; it is currently in washing cycle.'];
 datarcvd02 = 1;
 else
 message01 = ['The wireless sensor #' device(4:5) ' is installed on washer. The washer is
not available; it is currently in spinning cycle.'];
 datarcvd02 = 1;
 end;
 else
 if(voltage02 < 1.0)
 message02 = ['The wireless sensor #' device(4:5) ' is installed on dryer. The dryer is
currently available.'];
 datarcvd02 = 1;
 else
 message02 = ['The wireless sensor #' device(4:5) ' is installed on dryer. The dryer is
currently not available; it is currently in operation.'];
 datarcvd02 = 1;
 end;
 end;
 data = fscanf(s); %gets out of the loop
 [device,type,voltage,strength,other] = strread(data,'%s%s%3.2f%d%s','delimiter',',');
 device = char(device);
 type = char(type);
 voltage = voltage;
 if(size(data) ~= [1 23] | size(device) ~= [1 5] | size(type) ~= [1 2])
 error = 1;
 while(error == 1)
 data = fscanf(s);
 [device,type,voltage,strength,other] = strread(data,'%s%s%3.2f%d%s','delimiter',',');
 device = char(device);
 type = char(type);
 voltage = voltage;
 if(size(data) ~= [1 23] | size(device) ~= [1 5] | size(type) ~= [1 2])
 error = 1;
 else
 error = 0;

42 | P a g e

 end
 end

 else
 ;
 end
 pause(0.0);

 end;

 end;

 end;

 clc
 message01 %display the message in commond window in MATLAB
 message02 %display the message in commond window in MATLAB
 pause(0.2);
 fid = fopen('message01.txt', 'w'); %output the message to a text file
 fprintf(fid, message01);
 fid = fopen('message02.txt', 'w'); %output the message to a text file
 fprintf(fid, message02);
 datarcvd01 = 0; %by the end of this loop, the data is received.
 % Therefore, change the value to 0 to initialize the loop.
 datarcvd02 = 0; %by the end of this loop, the data is received.
 % Therefore, change the value to 0 to initialize the loop.

end;

43 | P a g e

Appendix D. HTML code source : Main Page

<HTML>
<HEAD>
<TITLE>E90 Project</TITLE>
</HEAD>
<FRAMESET rows="30%, 70%">
 <FRAME src="top.html">
 <FRAME src="bottom.html">
</FRAMESET>
</HTML>

44 | P a g e

Appendix E. HTML code source : Top Frame

<html>
<head>
<title>Instruction Page</title>
</head>
<body>
<p>This is part of the E90 project.
<p>This is a top frame.

<p>The bottom page reloads every 2 seconds.
<p>Please wait for a seconds for data update
<p><*insert any direction here*>

</body>
</html>

45 | P a g e

Appendix F. HTML code source : Bottom Frame

<html>
<head>
<title>Instruction Page</title>
</head>
<body>
<p>This is part of the E90 project.
<p>This is a bottom frame.
<p>all the status are provided below:
<p>
<p>message 01
<iframe src="message01.txt"
width="100%" height="10%"
align="left"></iframe>
<p>
<p>message 02
<iframe src="message02.txt"
width="100%" height="10%"
align="left">
</iframe>
<meta http-equiv="refresh" content="2" >
</body>
</html>

