
Robotic Curiosity and Memory
Spatial and Implicit Approaches to Time in CBIM

Zack Ontiveros and Dougal Sutherland

Abstract

CBIM is an epigenetic robotics system that uses intrinsic motivation and categorization to learn about
its relationship with its environment. CBIM, however, fails to adequately deal with time-dependent
relationships; predictions made using CBIM utilize only the current timestep data. In the real world,
time is an essential part of interaction. For a system to be able to understand and predict complex
patterns and relationships, it requires some way of representing time. In this paper, we explore two
methods for applying time to CBIM – one spatial and one implicit – and compare the performance of
these two methods and CBIM using several simulated robot tasks.

1 Introduction

One key aspect in the development of general-purpose
intelligence is curiosity, the desire to learn about new
things. Human infants are particularly curious; they
are engaged in a continual investigation of their en-
vironment and the interaction between their own ac-
tions and the outside world. These activities are not
motivated by any external source, but rather come
from an intrinsic desire to learn. Later in life, al-
though extrinsic motivations play more prominent
roles in day-to-day activities, this intrinsic desire to
learn remains; we are forever driven to explore the
unknown.

A goal of epigenetic robotics is to use human de-
velopment as a model for implementing systems that
mirror a “human” brand of general intelligence. In-
stead of hard-coding the robot’s controller to attempt
different activities, the robot is given the opportunity
to explore its environment. Its learning is intrinsically
motivated, fueled by the desire to correctly predict
how its environment will respond to its actions.1

The Intelligent Adaptive Curiosity (IAC) system
of Oudeyer, Kaplan, and Hafner (2007) uses an intrin-
sic motivation for curiosity as the driving force in an
active learning system. In IAC, the robot categorizes
its sensorimotor space into regions, grouping together
similar situations in the environment. Each region is
associated with an expert that learns to predict how
the robot’s actions will affect its environment – that

is, to predict its sensors values at the next timestep,
given the current timestep’s sensor values and the mo-
tor actions that the robot is about to perform. IAC
focuses on events that will result in the maximum
learning progress, essentially those cases at “the edge
of chaos,” as Clark (1998) puts it, which are neither
too predictable nor too hard (or impossible) to learn.

IAC incorporates several of the fundamental prin-
ciples of development espoused by Lungarella, Metta,
Pfeifer, and Sandini (2003). Its development is incre-
mental, self-organizing, and is dependent upon the
predictive control of the environment based on cate-
gorization. It incorporates spontaneous activity and,
depending on the level at which sensors and motor
actions are defined, allows for self-exploration. Its
active nature is essential, as Baranes and Oudeyer
(2009) argue. Complex systems are much harder to
learn when the learner cannot interact with them; Jay
McLellan described attempts to learn language pas-
sively as “like trying to learn a language by listening
to the radio” (Elman, 1990).

One problem with IAC, however, is its ad-hoc cat-
egorization method. It creates new regions according
to a simple rule that splits a region once the num-
ber of experts has reached some fixed size. Repeat-
edly performing the same action in the same context
forever would thus result in infinitely many identi-
cal regions being created. Effective categorization,
however, is absolutely essential to successful develop-
ment: as Harnad (2005) argues, it is fundemental to

1We do not claim that a full general intelligence could be developed using only curiosity, of course. A robotic system moti-
vated only by curiosity might repeatedly hurl itself out of a window, interested in the way its perception changed as it fell and
how its motor controls change once damaged.

1

the basic activities which all organisms perform. For
a system to be robust, it must not be bogged down
by minute differences between similar situations; in-
stead it must be able to abstract from those situations
a general solution.

Lee, Walker, Meeden, and Marshall (2009) at-
tempt to resolve this with a modification which they
call Category-Based Intrinsic Motivation (CBIM),
which replaces IAC’s categorization method with a
more dynamic technique known as Growing Neural
Gas (Fritzke, 1995). This system creates new re-
gions only when the sensor data describing the new
situation differs sufficently from the present regions,
resulting in a better categorization of the environ-
ment over time. This improved categorization system
makes using neural network experts, rather than the
k-nearest-neighbor experts used in IAC, more feasi-
ble, as there are fewer redundant regions which each
claim part of the relevant training data.

One major drawback of the IAC/CBIM archi-
tecture, however, is that predictions are based only
on the current sensorimotor information. Time-
dependent relationships, which are clearly vital to an
understanding of complex real-world situations, are
impossible to learn. A human — or, indeed, any com-
plex animal — with no form of short-term memory
would have an exceedingly difficult time understand-
ing the world around it, let alone acting in it. There-
fore, for the IAC/CBIM approach to be workable in
more complex tasks, it must be augmented with time
information in some way.

In this paper, we propose two variations of the
CBIM architecture to incorporate time information.
FixWinCBIM employs a “spatial” approach to time,
extending the robot’s sensorimotor context to include
information from the last N timesteps as well as the
current one. MonoCBIM instead uses an Elman net-
work for memory, which necessitates abandoning per-
region experts in favor of a single monolithic expert
that predicts over the entire input space. In this pa-
per we will discuss their individual implementations
and analyze their performance in comparison to that
of the original CBIM on various simulated tasks.

2 System Details

We present the IAC/CBIM architecture only in its
CBIM realization, as it is that approach on which
our work is based.

2.1 CBIM

The CBIM system has three major parts. The first
is a Growing Neural Gas (Fritzke, 1995), an unsu-
pervised vector quantization system which builds a
model of the topology underlying its input vectors.
Nearby model vectors are shifted slightly to accom-
modate for each new input; in the Equilibrium-GNG
variation (Provost, Kuipers, & Miikkulainen, 2006)
which we employ, new model units are created once
the overall error in the GNG has reached a certain
threshold, allowing the GNG to create just enough
units to adequately represent its inputs. Part of the
process involves edges between units in the model;
CBIM does not use these edges directly. Example
GNGs are shown in Figure 1.

The second component of CBIM is its predic-
tion mechanism. This is comprised of simple feedfor-
ward neural networks associated with each GNG unit,
which are trained using backpropagation to output a
prediction for the next timestep’s sensors, Ŝ(t + 1),
given the current sensorimotor context SM(t).

The third component is the action selection mech-
anism. This system keeps track of the error in pre-
dictions — Euclidean distance between the predic-
tion Ŝ(t + 1) and the true value S(t + 1) — for each
region. Learning progress is then computed accord-
ing to a weighted estimate of the prediction error’s
derivative. More details on this procedure are avail-
able in Oudeyer et al. (2007).

When CBIM chooses an action to take, it begins
by considering the current sensor data S(t) and gener-
ating potential motor actions Mi(t). It then finds the
region associated with SMi(t) in the GNG and exam-
ines the learning progress in each region. Most of the
time, it then chooses an action associated with the re-
gion currently making the fastest learning progress;
some fraction of the time, it chooses a random action.
(In our experiments, we used a random action rate of
15%.)

After choosing an action, CBIM asks the associ-
ated expert for a prediction of next timestep’s sensor
values. CBIM then executes the chosen motor action,
finds the true value of S(t+1), and uses that value to
train the expert. It also stores the prediction error in
the region for future learning progress calculations.

In this way, CBIM focuses at first on easily-
learnable regions of its sensorimotor space, as their
learning progress will be high. Once an expert has
been well-trained, it changes to focus on the next-
most learnable region. This provides it with a clear
developmental trajectory as it focuses on more com-

2

(a) N = 1 (b) N = 2 (c) N = 3

Figure 1: 2D projections of the GNG models for the experiment described in Section 3.1.1 at various fixed-
window sizes. Note the exponential increase in the number of model vectors.

plicated aspects of its environment in phases.

2.2 Fixed Window CBIM

One approach that we took in adding time informa-
tion to CBIM is to extend the sensorimotor context
used at each timestep with a buffer that remembers
the previous N − 1 timesteps. We call this approach
FixWinCBIM. Using a fixed window size of two,
then, the sensorimotor SM(t) used by CBIM is then
replaced with the concatenation SM(t)SM(t − 1).
These longer sensorimotor vectors are categorized by
the GNG and provided as input to each region’s ex-
perts.

This approach allows us to retain the local experts
of the original IAC/CBIM architecture – a major
advantage, in that it keeps each expert’s prediction
space simple and (hopefully) easy to learn. The GNG
categorization will then seperate the space based on
not only the last timestep but also each timestep be-
fore that; if there would be k categories when con-
sidering only one timestep’s sensorimotor data, there
would be approximately k2 categories using a fixed
window of 2, and kN for a fixed window of N . This
is illustrated in Figure 1.

This categorization may well be more than is ac-
tually required for the task. If previous timesteps’
sensor data are irrelevant to predicting the effects
of motor actions in a certain context, the GNG will
still create separate categories for each combination
of past timestep states with the current one, thus sig-
nificantly overcategorizing the space. The robot will
then have to learn the prediction space for each of

those categories. Each region may be easy to learn,
but it still certainly slows down the process; different
experts must learn essentially the same thing.

The robot’s memory is further limited by the
value of N : it would be unable to learn time depen-
dencies that span a longer time window. This is a
problem in that the designer must predetermine how
large N should be; if it is too large, development will
be much slower and the number of categories (and
hence the number of experts) will increase exponen-
tially, while if it is too small, certain aspects of its
environment will be simply unlearnable.

2.3 Monolithic CBIM

MonoCBIM, our other approach in adding time in-
formation to CBIM, is a more drastic change. We
use an Elman network (Elman, 1990) as an expert to
add an implicit memory, which can (in theory) au-
tonomously decide what is important to remember
and how long it should be remembered for. (An El-
man network is a simple three-layer neural network in
which the hidden layer is self-recurrent, so that last
timestep’s hidden layer is used as a so-called context
layer for the next timestep’s evaluation.)

This requires, however, that the same network be
consulted at each timestep — otherwise its memory
would only have access to the timesteps where sen-
sorimotor perceptions fell into that expert’s region.
We therefore implemented it as a single “monolithic”
expert, whose task is to predict the effects of motor
actions over the entire input space of the task.

MonoCBIM still uses the GNG to categorize sen-

3

sorimotor inputs and choose which motor action will
result in the most learning progress, using them to
drive the active learning system. The monolithic ex-
pert’s prediction space, however, is far more complex
than that of any of the experts in the original CBIM
or FixWinCBIM, and so MonoCBIM abandons many
of the categorization advantages of the IAC/CBIM
architecture. It is also unclear in advance how large
the context layer of the Elman net should be.

Simple neural network architectures like the one
we use tend to be bad at predicting many unre-
lated tasks; after mastering one task, the expert
may well forget it while learning another. Alterna-
tively, if the learning rate is too low, the network
may learn the first task and then be too “stuck in its
ways” to learn another unrelated task. In complex or
general-purpose environments, more complex topolo-
gies or possibly other machine learning systems may
be needed.

Some have found success in training networks by
resetting the context layer, first at short intervals and
then gradually extending the resetting schedule. We
attempted this on the time-dependent experiment de-
scribed in Section 3.3, but found that performance
was essentially identical.

Using a monolithic expert does have another ad-
vantage, though, in that the training process never
needs to restart. In CBIM, when a region is split, the
neural network expert is started from random con-
nection weights.2

3 Experiments

To examine the characteristics of our new CBIM
variations, we compared the performance of
FixWinCBIM and MonoCBIM to the original CBIM
in several tasks, including the original CBIM experi-
ment and new explicitly time-dependent tasks.

All experiments were performed in the PyRobot
simulator (Blank, Kumar, Meeden, & Yanco, 2006).
We used a learning rate of 0.5 and a momentum of 0
for our experts; the time window of progress calcula-
tion was 10, while the smoothing factor was 15.

In all experiments, we tested FixWinCBIM with
window sizes of both 2 and 4, and MonoCBIM with
Elman context sizes of both 4 and 15. This allows us
to determine their relative performance on tasks of

varying complexity.

3.1 Color Vision Task

We reproduced the original CBIM experiment per-
formed by Lee et al. (2009), as well as investigating
a simplification of that task.

3.1.1 Original CBIM Experiment

The original CBIM experiment consisted of one devel-
oping robot placed in the middle of an environment
with green walls. The robot shares its environment
with a stationary red robot and a blue robot which
oscillates back and forth at a regular rate. The devel-
oping robot is used essentially as a rotating camera;
it is constrained to stay in-place but can rotate arbi-
trarily (controlled by a motor output separated into
seven bins for various rotation speeds). The simu-
lated situation is pictured in Figure 2.

Figure 2: Our simulation of the original CBIM task.
The overlay represents the robot’s camera.

The robot is given five sensors. The first three
are binary flags indicating the presence or absence of
each of red, green, and blue in its field of vision. The
robot also chooses with its second motor action to
focus on a specific color (red, green, or blue) at each
timestep. If the robot’s color-focus motor value was
between 0 and 1

3 in the previous timestep, it focuses
on red, between 1

3 and 2
3 on green, or between 2

3 and
1 on blue. The robot’s fourth sensor represents the
size of the bounding box around the largest area of
the focused color in its vision, and the fifth the posi-
tion of that box: 0 for it being in the left portion of
its vision, 0.5 for the middle, or 1 for the right.

2This is, to some degree, simply an implementation issue: one could choose to retain all past sensorimotor training data,
or a representative sample, and then train new experts based on the data that fall into their new region. This is the approach
taken by Oudeyer et al. (2007), though because they use k-nearest-neighbor experts, they have to retain all past training data
in any case.

4

We ran two versions of this experiment, with the
blue robot moving at different speeds.

3.1.2 Bluebot experiment

The bluebot experiment is a simplification of the orig-
inal CBIM experiment. We extracted only the part
to which our temporal modifications are relevant:
trajectory-following on the oscillating robot. In or-
der to predict where an object is about to be, one
needs to know not just where it currently is, but also
which way it is travelling – information that could be
provided by knowing where it was a fraction of a sec-
ond earlier, or, perhaps, by some sort of switch state
in the context layer of an Elman network. It could
reasonably be expected, therefore, that time-aware
versions of CBIM will have improved performance on
this task.

Figure 3: The environment for the bluebot simplifi-
cation of the original CBIM task.

The environment, as pictured in Figure 3, consists
of just the developing robot and a bluebot oscillating
across its field of vision. (Walls are no longer green in
the simulator.) The developing robot is a stripped-
down version of the original color-vision robot: the
red and green detection sensors are removed, as nei-
ther will ever be present, and the robot’s rotation
motor has also been removed; it is stuck in place.
The color location sensor has also been made contin-
uous rather than chunked, in an effort to make the
task slightly more time-dependent. To maintain the
active nature of CBIM, however, the color-focus mo-
tor has been retained. If the robot chooses to focus
on red or green – ie, if its motor output is less than
2
3 – its sensor values will all be 0.

We also ran two versions of this experiment with
the same two speeds for the bluebot.

Results

Somewhat surprisingly, the new implementations of
CBIM performed no better than the original in ei-
ther the bluebot or original experiments, as shown in
Figures 4 and 5. (Error is only reported to 10,000
timesteps, but runs were generally made to 20,000
steps, and a few were tried out to 60,000, with no
improvement in performance.) Results for the two
speeds of bluebots were similar.

We believe that this lack of improvement has to
do with the nature of the experiment. Although
trajectory-following is in theory a time-dependent
task, our timesteps are quite short compared to the
speed of the bluebot, even when it moves at the max-
imum speed allowed by the simulator. As such, pre-
dicting that the robot will simply occupy in the same
place as it did the timestep before will result in quite
low error already; there is not enough “incentive” to
learn the nuances of that sensor value.

3.2 Jumping robot experiment

We next altered the bluebot task to be more explicitly
time-dependent. In this “jumping robot” experiment,
the experimental setup is identical to that of Figure
3. Rather than moving back and forth, however, the
blue robot jumps in and out of the developing robot’s
field of vision. Sensors are further simplified to a sin-
gle binary value that tests whether the focused color
is present in the robot’s field of vision. The color
focus motor is maintained.

We ran two variations of this experiment: one
where the bluebot jumped every 3 steps and one
where it jumped every 5.

Ideally, this task should be impossible for memo-
ryless CBIM to learn to better than a 2

3 probability
(4
5 in the 5-step version) when it chooses to focus

on blue, while fixed windows of two steps provide
enough information for perfect predictability in the
3-step case, and 4 enough in the 5-step case.

Results

The fixed-window runs did not achieve perfect pre-
diction status. They did, however, perform signifi-
cantly better than the original CBIM. In the 3-step
version, the 2- and 4-window systems performed sim-
ilarly; in the 5-step version, the 2-window system did
only slightly better than original CBIM, while the
4-window system performed rather well. This is as
expected.

5

0

0.5

1

1.5

2

2.5

0 2000 4000 6000 8000 10000

P
re

di
ct

io
n

E
rr

or

Timestep

Original CBIM
Random

Fixed-Window 2
Fixed-Window 4

Monolithic (4)
Monolithic (15)

Figure 4: Prediction errors for the full color vision task. The black “random” line shows prediction error
from a controller which simply made random guesses as to the sensor values, indicating baseline performance
for the task.

0

0.05

0.1

0.15

0.2

0.25

0 2000 4000 6000 8000 10000

P
re

di
ct

io
n

E
rr

or

Timestep

Original CBIM Fixed-Window 2 Fixed-Window 4 Monolithic (4) Monolithic (15)

Figure 5: Prediction errors for the bluebot simplification of the color vision task.

6

The Elman networks did not fare as well; in fact,
the 15-node context version performed worse than the
original CBIM.

Part of the poor performance may be due to a
bug in our simulation. It appeared that almost 10%
of the time, our method for moving the bluebot did
not line up exactly with the timesteps of the simu-
lation; it sometimes appeared in the camera results
either the timestep before or the timestep after. This
would make the task as a whole significantly less pre-
dictable.

3.3 Overheating Toy Example

Our experiment with the most complex time depen-
dence involved a developing robot interacting with
a toy of sorts. The toy changes colors according
to an internal state; the robot has a camera which
views this color, and one motor action that deter-
mines whether or not it interacts with the toy. The
world itself is otherwise identical to Figure 3.

0

1

4

2

3

2

3

5

1

4

Interaction
No Interaction
Cool Down
Quick Cool Down

Figure 6: The state transitions of the color-changing
toy.

The toy’s color relies on the value of an internal
counter. Initially, the counter is set to 0 and the toy’s
color is green. If the robot interacts with the toy, its
counter increments; if not, the counter decrements.
The toy turns red when its counter is more than 0; if
it reaches 0 again, it reverts to green.

If the toy’s counter reaches 5, it “overheats” and
turns blue. While the toy is overheated, the robot’s
interactions (or lack of interactions) have no effect;

it instead cools down at a rate which is a parameter
of the experiment. We did experiments with cooling
rates of 1 and 2, resulting in toys that cool down in
5 or 3 steps, respectively. Once the cooldown period
has ended, it returns to green.

Results

Prediction errors from representative runs of the task,
with cooldown rates of 1 and 2, are presented in Fig-
ures 7 and 8, respectively. Error rates are only shown
through 10,000 steps, but they were run through
60,000 and showed no significant changes not repre-
sented in the first 10,000 steps.

FixWinCBIM clearly outperformed its competi-
tors on this task. The differences between the sizes
of the fixed windows are interesting, however. In the
experiment with a cooldown rate of 1 (Figure 7), the
fixed-window systems with windows of 2 and 4 per-
formed similarly, although the 4-window one takes
significantly longer to reach that level of performance
(as expected). This makes sense; neither one has a
long enough window to know when the cooldown pro-
cess or, to a lesser extend, the overheating process,
began; they are working with essentially the same
information. In the experiment where the cooldown
process takes three steps (Figure 8), however, the sys-
tem with a window of 4 greatly outperformed the one
with a window of 2. In this case, the cooldown process
is completely predictable, so error is reduced drasti-
cally.

The Elman networks performed at about the level
of the original CBIM.

4 Discussion

The results from our experiments overwhelmingly
suggest that FixWinCBIM is the best approach to
adding time to CBIM, at least in these simple sit-
uations. Although it does over-categorize the input
space and thus takes longer to train to its final level
of performance, its asymptotic performance does not
suffer even in non-time-dependent tasks such as the
original CBIM experiment.

Unfortunately, MonoCBIM failed to outperform
the original CBIM in any of our experiments. This is
probably due to several factors, perhaps the most im-
portant of which is that Elman networks simply are
not very good at counting (Elman, 1990). In the sim-
ple domains in which we can practically test and an-

7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5000 10000 15000 20000

P
re

di
ct

io
n

E
rr

or

Timestep

Original CBIM Fixed-Window 2 Fixed-Window 4 Monolithic (4) Monolithic (15)

Figure 7: Prediction errors for the color toy task of Section 3.3, with a cooldown rate of 1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2000 4000 6000 8000 10000

P
re

di
ct

io
n

E
rr

or

Timestep

Original CBIM Fixed-Window 2 Fixed-Window 4 Monolithic (4) Monolithic (15)

Figure 8: Prediction errors for the color toy task of Section 3.3, with a cooldown rate of 2.

8

alyze CBIM-like architectures, however, most time-
dependent tasks seem to rely essentially on counting.

Furthermore, the simple topology of the network
may be holding it back. More complex topologies
and a better learning algorithm than backpropoga-
tion might be advantageous. In particular, training
Elman networks can be a sticky wicket, and CBIM’s
approach to guiding training is not necessarily par-
ticularly well-suited to training Elman nets.

Perhaps abandoning the categorization aspect of
CBIM to the extent that MonoCBIM does, however,
is simply too much. Essentially, MonoCBIM is just
an Elman network being trained on its environment
according to how quickly it is learning various aspects
of it. More tweaking of the system to accommodate
for the idiosyncrasies of the Elman nets would be pro-
ductive.

5 Future Work

There are many aspects of the CBIM architecture
which could be profitably improved, many of which
have nothing to do with knowledge of time. Some
form of accounting for other motivations than just
curiosity would be necessary to a fuller system; work
on constraining development in the early stages and
gradually opening up possibilities is also very inter-
esting.

In terms of the systems discussed in this paper,
though, there is also much interesting work to be
done. Clearly MonoCBIM needs improvements if it
is to be used effectively. There are several lines of
work that could be done in this area; most obviously,
one could use a different learning system than Elman
networks — one that learns faster, is better at pre-
dicting, and/or has a more robust memory system.
The Long Short-Term Memory system of Hochreiter
and Schmidhuber (1997) seems one promising avenue
to investigate, or perhaps their related recurrent SVM
approach.

Alternatively, it would be ideal to come up with a
system that can somehow combine local experts with
a global memory. Perhaps there could be a mono-
lithic memory system that would pass extra inputs
to the local experts, or each expert could be provided
with extra outputs to signal one another. There are
many interesting issues to work out in such systems,
but retaining highly specific experts seems desirable.

In terms of FixWinCBIM, the largest problem is
clearly setting the parameter N . Perhaps a system

could be developed that would dynamically deter-
mine how much context is needed for different top-
level categories of the current sensorimotor contexts.
Once it had been determined that a given node needs
more context (by having high enough error), it could
be provided with another level of context. There
would then be a sub-GNG that only applies to certain
top-level nodes, a process which would be reapeated
as necessary. Some experts, then, might be provided
with six levels of context, while others get just one.
This would also be very interesting to investigate.

References

Baranes, A., & Oudeyer, P.-Y. (2009). R-IAC:
Robust intrinsically motivated active learning.
Proceedings of the IEEE International Confer-
ence on Learning and Development , 1–6.

Blank, D. S., Kumar, D., Meeden, L., & Yanco, H.
(2006). The Pyro toolkit for AI and robotics.
AI Magazine, 27 (1).

Clark, A. (1998). Being there: Putting brain, body,
and world together again. Cambridge, MA: The
MIT Press.

Elman, J. L. (1990). Finding structure in time. Cog-
nitive Science, 14 , 179–211.

Fritzke, B. (1995). A growing neural gas learns
topologies. Advances in Neural Information
Processing Systems, 7 .

Harnad, S. (2005). To cognize is to categorize: Cogni-
tion is categorization. In H. Cohen & C. Lefeb-
vre (Eds.), Handbook of categorization. Ams-
terdam: Elsevier.

Hochreiter, S., & Schmidhuber, J. (1997). Long
short-term memory. Neural Computation, 9 (8),
1735–1780.

Lee, R., Walker, R., Meeden, L., & Marshall, J.
(2009). Category-based intrinsic motivation.
Proceedings of the Ninth International Confer-
ence on Epigenetic Robotics.

Lungarella, M., Metta, G., Pfeifer, R., & Sandini,
G. (2003). Developmental robotics: A survey.
Connection Science, 15 (4).

Oudeyer, P.-Y., Kaplan, F., & Hafner, V. (2007).
Intrinsic motivation systems for autonomous
mental development. IEEE Transactions on
Evolutionary Computation, 11 (2).

Provost, J., Kuipers, B. J., & Miikkulainen,
R. (2006). Developing navigation behav-
ior through self-organizing distinctive state ab-
straction. Connection Science, 18 (2), 159–172.

9

