Quadtree Construction on the GPU:
A Hybrid CPU-GPU Approach

Maria Kelly Alexander Breslow
mkellyl@sccs.swarthmore.edu abreslol@swarthmore.edu

Abstract

We introduce a method for fast quadtree construction on ttapl@cs Process-
ing Unit (GPU) using a level-by-level approach to quadtreastruction. The
algorithm is designed to build each subsequent level fraptrent nodes of the
previous level and thus is suitable for parallelization.r @ark is motivated by
the use of quadtrees for spactial segmentation of LIDAR gatats for grid digi-
tal elevation models (DEM) and the need to reduce total caatjoun time in grid
DEM construction. We introduce an algorithm suitable foadiiee construction
on the GPU which reduces the construction problem to a gptéisk of the data
points. We then describe three possible implementatiotheatlgorithm: a purely
GPU-based implementation, a CPU-based sequential implatien, and a hy-
brid approach, which builds the first several levels on the) ®Efore transferring
the data to the GPU to construct the remaining levels. We Fatlthe hybrid im-
plementation outperforms all other implementations ofigehtly large datasets
and provides significant speedup over our two sequentiadtgem implementa-
tions.

1 Introduction

Fast construction of spatial data structures that indexynmaifions of points and/or polygons is
essential for computation on very large datasets. Algaorithvhich make use of partitioned datasets
often perform orders of magnitude better than their coyates that do not segment the data before
processing. Thus both fast and effective construction afiapdata structures proves a necessity
for expanding the threshold of data that may be processéihvétgiven time frame. Consequently,
novel approaches in data structure generation are negessar

To meet this end, parallelization must be thought of as tlsgvan Purely sequential approaches to
computation, while invaluable for many applications, aaahing their limits. The growth of pro-
cessor clock speed has stagnated, meaning that compuiaiia single core will not significantly
improve, at least not in the foreseeable future. This slowstis largely due to limits in the material
properties of silicon, meaning that further increasesagickpeed lead to massive increases in power
consumption and, consequently, temperature. Hence witdaborate cooling systems and power
grids, silicon-based processors either melt or do not hafficignt power to attain ever-increasing
speeds. Therefore until a new material is used for the fatioic of computer components, realistic
processor speeds are bound at approximately 2 to 3 gigah#tat this means for computing is
that parallelism must be thought of as the future of commatly intensive computing.

120 4

GT200

1000 Ultra
o 6oy 100 1 -
—e—intet cPU qso Go2 Gso_ "
e Ulira w ;
2 G8o /
= 80 1
d 500
&
= GT1
g G Bandwidth i 4
70 50 4 714
250 3.2GHz GB/s 60 1 7
Nvas NV40 3.0 GHz Harpertown 4
NVao Core2 Duo
" .P—IF———4.h———‘——4.——4."—-d.h‘—“'—'_-_‘. | . 5,
Jan Jun Apr Jun Mar Nov May Jun 40 NV40
2003 2004 2005 2006 2007 2008 o Harpertown
| o ‘Woodcrest
GT200 = GeForce GTX 280 G71 = GeForce 7900 GTX V35 = GeForce FX 5950 Uitra 201 NV'BG_ r Prescott EE
592 = GeForce 9800 GTX G700 = GeForce 7800 GTX NV30 = GeForce FX 5800 - Northwood
GBO = GeForce 8800 GTX V40 = GeForce 6800 Ultra

2003 2004 2005 2008 2007

Figure 1: (Left) The maximum number of floating point opevas per second (FLOPS) possible with CPU vs.

GPU computing. The FLOPS achieved by NVIDIA GPU'’s have iased more quickly than that of the fastest

CPUs. (Right) From 2003 to 2007, the bandwidth of the GPU haased at a much faster rate than the chip
bandwidth on the CPU.

Because of this, we choose to focus on an implementationuitdibg quadtrees that makes ex-
tensive use of parallelism in order to gain significant spgedWe utilize NVIDIA's CUDA pro-
gramming model for the GPU, allowing us to execute thousafdisreads simultaneously on the
graphics processing unit (GPU). CUDA makes use of a gridiblmsed architecture whereby the
CPU oversees the scheduling of blocks of threads to the afragres comprising the GPU. This
allows for embarrassingly parallel applications, namalyse where computation is repetitive and
largely logically independent, to see speedups of up toratweders of magnitude on a consumer-
level computer. Additionally, we select CUDA over tradited CPU-based thread libraries such as
POSIX Pthreads or OpenMP because although multicore CRisocay commonplace, their com-
putational throughputis limited when compared to that ofJSP

In a case study presented by NVIDIA in [1], NVIDIA demonststhat, in the past several years,
both floating point operations per second (FLOPS) and chiplsath are both better and continue
to increase at much faster rate on the GPU versus the CPU {@ae B). Therefore, our choice of
using the GPU for parallelism enables us to construct laogggns of the quadtree simultaneously
and take advantage of the GPU’s computational superidritis allows us to achieve considerable
speedup of quadtree construction.

The next section describes related work, including initiatk done with quadtree construction, the
importance of quadtrees for grid digital elevation modeistouction, and research on constructing
data structures on the GPU. In Section 3, we present ouritdgofor quadtree construction and
explain how we reduce the problem to a sorting task. In Seetiwe describe the three possible im-
plementations of the algorithm and in Section 5 we presethti#stuss the results of implementing
the algorithm on the CPU and with our hybrid CPU-GPU appro&tections 6 and 7 we describe
future directions for the quadtree-sort algorithm apphomcquadtree construction and conclude.
Finally in Section 8, we present some reflections on our wibkk project, and working with CUDA
to program for the GPU.

2 Related Work

2.1 Quadtrees

A quadtree is a data structure used to spatially index p@inks. The tree, like all quadtrees has a
root, but specific to quadtrees is that each subsequentdardiave a maximum of four children for
every parent. Thus a quadtree with k levels including the wamild have4(*~1) nodes on théth
level and(4F) — 1 nodes in total. The purpose of each node is to represent adbaubox in the
plane for a subset of the data points. At the root, the bowgnblox contains all of the points of the
dataset. For quadtrees one also defines a threshold valine fimraximum number of points allowed
in each bounding box (segment). If the number of points invargsegment of the data is greater
than the threshold value, the rectangular parent segmsplii$nto four geometrically similar child
segments.

For the purposes of geographical data, these are the NasthMa@rtheast, Southeast, and Southwest
guadrants of the parent’'s bounding box. When the numbertaf giaints in any of these segments
exceeds the threshold value, then all segments exceedinthtbshold are again split into four
guadrants. If a segment has a number of data points less tlegual to the threshold, that segment
no longer splits and becomes a leaf of the quadtree. In thisdedasets with relatively uniform data
distributions may be indexed in a tree of height no greaten @(log, (datasetsize/threshold)).
Another benefit is that all segments may directly know the ghatints that they contain, yielding
O(n) access time for all the data in any segment. Consequentlgeldtfat this is an effective way
for the segmentation of data in the plane. (See Figure 2).

IR o
* * ¢
R O
* 1e ¢ 2
- - o © ¢ e I
<. R 0000
* . o
*
>
< . * o * /‘*\
: : 9000
*
.‘. * hd prax v‘\\\«
- 0000000000
- A ry
- *

Figure 2: A sample quadtree with a thresholdceiaz = 3. The 19 points ink? in the top-left bounding box
are split into four children nodes having 7, 4, 5, and 3 peirgspectively. Each non-terminal child is split into
four child nodes until each node contains 3 or fewer points.

2.2 Grid DEM Construction Using Quadtrees

Our work is motivated by the use of quadtrees for the segrtientaf LIDAR data for a given geo-
graphic region. LIDAR data is a 4-tuple consisting of:iancoordinate (East-West),;a-coordinate
(North-South), az—coordinate (elevation), and an intensity coordinate Ksftie of the returning
signal). For the purposes of our experiment, we ignore ttenaity. Our quadtree implementations
then take the approach described in [2] in which we index daiats in R3 based on their—
andy—coordinates. This allows us to index points in 3-space witlesorting to using an octree.
Once the data is segmented, an interpolation algorithm &y bbe used on the data to interpolate

the pixel values for a digital elevation models. Becausa dagmentation is an important part of
DEM construction, its parallelization for speedup is neeeg for fast processing of multi-gigabyte
datasets. This serves as the primary motivation for pdirlig the construction of our quadtree
implementation.

In their paperFrom Point Cloud to Grid DEM: A Scalable Approach Argarwal, Arge and Danner
propose a three part, scalable, sequential algorithm famiezft construction of grid based digital
elevation models (grid DEMSs) on large, multi-gigabyte data [2]. They describe a three phase
approach consisting of data segmentation using a quadtgbor finding also using said quadtree
and thirdly interpolation applying whatever method onessfiie The authors explain how large
guadtrees that do not fit entirely into RAM must instead bét lauid processed in stages. Agarwal
et al. describe incremental and level-by-level constamctf quadtrees and then adopt a hybrid
approach. In said approach, the authors build three leVelseoquadtree at a time, with leaves
containing lists of points. The algorithm is then repeatacach of these lists until the number of
points in a leaf is less than or equal to some threshold v&laimts that are too close to other points
are discarded.

To find the neighbors of a leaf, the authors again describe@amnental approach where leaves that
share a partial common edge or full edge of their boundingebaxe said to be adjacent. This is
accomplished by first selecting a leaf and then tier by tieimggif its bounding box shares partial or
full edges with the the bounding boxes of other segmentsségmnent is not a leaf, this process is
repeated on its children until only leaf nodes are said todjecant to the leaf node in question. The
authors’ layered approach involves loading the top leveth® tree into memory and recursively
processing the leaves using the incremental approach amel additional overhead.

The description of the data interpolation phase leaves s#onteto be desired, but Agarwal et al.
admit that there are multitude of data interpolation aldponis. Thus the algorithm is not data inter-
polation method specific.

For the purposes of our work, we choose only to focus on theeatation phase and its paral-
lelization. We observe that this is an essential part of therahm to parallelize because parallel-
constructed quadtrees are not only useful to the indexidgsagmentation of LIDAR data but have
been shown to serve many other purposes. In fact a more dgjigrdraersion of our implementa-
tion should extend to quadtrees used for image processthga@anpression as well as for computer
graphics.

2.3 Data Structures on the GPU

Another paper which is quite relevant to our worlEest BVH Construction on GPUsby C. Lauter-
bach et al. 2009. In their paper, they present a new algorithrthe computation of bounding
volume hierarchies (BVH). BVHs are of imminent importankeoughout many areas of computa-
tional geometry and computer graphics because algorithatsnake use of them are often times
considerably faster.

Because spatial segmentation through the use of quadsr@esimplified two dimensional analog
of bounding volume hierachies, understanding fast coostmu of BVHSs is key to making good
choices when designing an algorithm for fast constructibquadtrees. Consequently this paper
demonstrates several important lessons which are reléwvantr work. First, they choose to im-
plement their algorithm in CUDA because it allows for fineigr parallelism and simultaneous
execution of thousands of threads. In their implementatiogey make heavy use of shared block
memory which is as fast as register accesses for singleneaibis is approximately 150 to 200
times faster than global device memory, making its use a foustgnificant speedup.

Second, they implement a novel algorithm called the Lineaurigling Volume Hierarchy (LBVH)
which reduces the problem of bounding volume hierarchiemmof sorting. This allows them to
achieve speedups of BVH construction which are over an amtderagnitude faster than equivalent
GPU-based constructions using the Surface Area HeurBAt&]. The authors map the geometric
primitives to a space filling curve. They then sort using thienftives’ relative position along the
curve as the heuristic. If a parent occupies the intefuahax] on the curve, then its k children
would occupy(0, c1), [c1, ¢2),. .., [ck — 1, maz]. In this way, all primitives may be sorted without
destroying ancestor’s descriptions of their data memiaarsprting on subintervals does not affect
the relative ordering of the data on the larger curve.

These facts are of importance for our work because we aimhigae parallel speedup by imple-
menting an algorithm which reduces the problem of dataggnheatation into a sorting problem.
Likewise, we hope this will permit our parallel implemerdatof quadtree construction to be more
than an order of magnitude faster than both the iterativeraadrsive sequential, CPU-based ap-
proaches because sorting algorithms can make use of thelased memory of thread-blocks.

2.4 Initial Work on Quadtrees

In their paperQuad Trees. A Data Structure for Retrieval on Composite Keys, Finkel and Bentley
introduce the quadtree data structure [3]. They give a loiédihition and provide algorithms for
insertion and balanced insertion, searching and optiioizaT he authors claim that the deletion of
nodes and the merging of quadtrees proves to be quite diffieldwever, insertion i€ (nlogn)

, searching i9(log n) and optimization for the purposes of balancing the tree iddgf). These
properties are quite nice because they allow quadtrees ¢uibkly constructed and restructured.
This makes them an ideal data structure for multiple insesti

Since the paper focuses on quadtrees using composite keys d@re additional problems which are
found that do not exist in the more naive implementationsdfata indexation, segmentation and
compression. For instance, removal of nodes is not an issusuf application because a remove
of a node would mean a loss of information about the segnientaf the dataset. Additionally,
merging two trees is not an issue for the data segmentatiasepbf our algorithm because one
constructs only one quadtree. So although merging infaomain two datasets is difficult, this
in not the object in question. Therefore the quadtree is wely suited for this application, as its
primary weaknesses do not play a role in the implementafieuioalgorithm.

2.5 Linear Quadtrees

In his 1991 work, Fangju Wang gives a good overview of lineaadjrees and introduces the
relational-linear quadtree [5]. Wang describes the lirpzadtree as sorted list of region codes,
essentially a sorted list of keys that map to the leaves dféiee Leaves are encoded in binary based
on the quadrants where they and their ancestors exist thithiegrecursive splitting of the quadtree
construction process. This canonical labeling takes thm fof O for NW, 1 for NE, 2 for SE and

3 for SW. Thus a node which represents a region in an imageeinipper right of the rectangular
pixel buffer could have a region code of 12. Namely, this nbdg as its ancestor the root and the
root’s NW child. Since the code is 12, it occupies the SE qamidsf the root’s NW child’s bounding
box. If a region represented by a node is the merged resuthafier regions, an X is appended to
its region code for every time it has been merged. For exar3pk would be the same as 30, but
because the height of the tree excluding the root is 3, werapae X.

The author also gives many of the motivations for using ogusdt specifically citing the linear
guadtree’s application to geographic information systegmsvhich our paper is oriented. Because

the linear quadtree directly stores the leaves in an arraiipivs for more efficient use of memory
and quicker access to data. One does not have to do a treesabteeraster an image represented as
a linear quadtree but merely iterate through the leaf lisar-here, he presents the relational-linear
quadtree.

3 A Sorting Algorithm Solution

To accomplish the task of parallelizing quadtree consimador the GPU, we follow the general idea
from [4] that the simplest method for building a quadtreetenPU is to reduce the problem to “a
sorting problem,” which closely resembles a linear quaatfiehus, at each step of our construction
algorithm, we implement guadtree-sort on the dataset and let each new child node correspond to a
specific interval of the dataset for which we are buildinggoeadtree. Using this method, nodes are
represented by their specific start end end points in a qeexdiwrted dataset rather than by explicitly
linking them them with the specific data that they contain.

3.1 Data Structure Representation

Global Data Array of Length n

Ooo
- Root's Data [0, n - 1] >
Bounding Box
xMin, xMax, yMin, yMax

Tree Levels of a
Balanced k-Level
Quadtree

—> Level 0 (Root)

—> Level 1

—> Level 2

[m]
[m]
=]
D—> m] EIE||:|Levelk

Figure 3: The quadtree data structure for the quadtreavsattiod of quadtree construction is comprised of the
original data-array, an array of arrays of nodes for eachlldZach node consists of a bounding box, start and
end indices representing their interval of the global dataysand a pointer to its four children.

For thequadtree-sort linearized approach to quadtree construction, the actisdiee data structure
is comprised of (1) the array of datapoints and (2) an arrayaioing one array of nodes for each
level of the tree. The nodes are comprised of a two-dimeasioounding box for the data they
represent, start and end indices into the array of datapaiftich represent the portion of the data
for which that node is responsible, and a pointer to fourdrhih nodes. See Figure 3 for a visual
representation of the data structure.

xRange — (xMax — xMin) 2 3
yRange — (yMax — yMin)
forall pin [sparent; €parent] O
xIndexr — 2 x (p.x — xMin)/xRange
yIndex «— 2 * (p.x — xMin)/xRange
bucketIndex «— 2 x yIndex + xIndex O 1
end for

Figure 4. (Left) The algorithm for assigning child bucketspintsp from the parent node, whereMin,
xMax, yMin andyMax are the outer vertices of the parent node’s bounding boxh Baimt is assigned an
xIndex andyIndex with values of either 0 or 1 which are used to compute the Hiiokiex value between 0
and 3. (Right) A visualization of how each bucket index cspands to the four child nodes’ bounding boxes.

3.2 Construction of the Quadtree

To construct the quadtree, we must first traverse the erdite skt to find the maximum and min-
imum values for thec—, y—coordinates of the dataset and thus determine a boundinfpbadtxe
data. Then, as we build nodes for each sublevel of the tre@itiadize a new array of child nodes
for the sublevel which consists of four times as many nodeseas present in the previous level.
Then, for each parent node in the array of the previous lexekubdivide the node’s bounding box
into four equally-sized bounding boxes. After we compute ¢hild nodes’ bounding boxes, we
implementquadtree-sort.

This sort is a modified bucket sort which consists of two stagé@st, each datapoint from the
parent node (the points in the data-array fref,cn: t0 eparent) IS assigned one of four buckets
corresponding to which child node’s bounding box the pog&lbhgs (see Figure 4); then the points
are sorted within the data-array such that all points cpomrding to a given bucket are placed next
to each other in the sorted data-array and that all pointsirem the interval(sparent, €parent)-
Finally, we assign to each child node its start and end isdit¢he newly-sorted data-array.

After sorting, we obtain a new configuration of the datasetliich the children of each parent node
will correspond to subintervalS,arent, €cil, [ec1+1, €ca], [eca+1, ecs), andleqs +1, eparent]) Where

e« 1S the endpoint of the data belonging to buckeat the sorted dataset. We continute subdividing
the bounding boxes at each level and conducting a quadiréefghe corresponding data until the
number of points in every node in the sublevel is less thamoakto the threshold valugé,— mazx
(See Figure 5). If, at any level, the parent node consists-efmax or fewer datapoints, its child
nodes are assigned null values.

4 Three Implementation Choices

The algorithm described in the previous section for a bodda quadtree level-by-level can be
easily parallelized to the GPU even for large datasets hygrisg one thread to every parent node.
However, it is also possible to implement the algorithm iruagly sequential manner on the CPU
by initializing a child node array, looping through the paraodes of each level and building its
corresponding child nodes (bounding box assignment andtrgeasort of the parent’s datapoints).
In this section we describe in detail the design choicescietsal with these two implementations
and introduce a hybrid approach to quadtree constructatrutilizes both the CPU and the GPU.

——— > Parent (s, e, b)

v

Determine Bounding
Boxes of Children

v

Quadtree Sort
Data [s, e)

v

Assign start/end
indices to Children

I I I |
Cco C1 Cc2 C3
(s0,60,00) (s1,.e1b1) (s2,e2b2) (s3e3b3)

Figure 5: The quadtree-sort method of quadtree construésiccomprised of three phases: bounding box
construction, quadtree-sort, and assignment of start adploénts of the sorted dataset.

4.1 Parallelization on the GPU

The quadtree-sort method for level-by-level constructibithe data structure is logically suitable for
parallelization. Since each parent node is distinct and doéshare any data with other nodes from
the same sublevel, the four children of each parent node eatoimputed simultaneously. Thus,
in the GPU-based approach to quadtree-sort constructienspawn one thread for each parent
node from the previous level which computes and assignshtite lmounding boxes and carries out
guadtree-sort on the appropriate datapoints. Parallielizaf quadtree construction is key for large
datasets: since the number of children at each subsequwehiddfour times that of the previous
level, the number of nodes at each level increases rapidlgfge datasets and thus it is useful to be
able to employ one thread for each parent node.

However, given that, in this implementation, paralleliaatakes place at the node level of granular-
ity, parallelization only significantly aids performanogeo sequential construction once the number
of parent nodes for a level increases above some thresindiatt] because of the significant amount
of time it takes to implement bucket sort on large datasetctinstruction of the first several levels
of the tree dominate the total construction time. Therefareinvestigate the CPU-performance of
the algorithm in addition to the purely GPU-based approach.

4.2 Sequential Approach on the CPU

To implement the level-by-level quadtree-sort constarctlgorithm on the CPU in a sequential
manner, instead of creating one thread for each parent meelédgop through the node array of
parents and for each parent construct their four childreddigrmining bounding boxes and doing
a quadtree-sort on the corresponding datapoints. By eamistg the quadtree on the CPU, we

are able to utilize functionality that the GPU and CUDA pragming model do not allow for, most
importantly, the use of non-inline functions. Thereforettie CPU-based approach to the algorithm,
we choose to use the C-standard quickgsdrt() to accomplish the quadtree-sort of the data. We
expect that as the size of each subsequent level increaseputation entirely on the CPU in this
way will become slow. However, the construction of the fiest/flevels should be relatively quick
as we are able to make use of a fast sorting algorithm.

4.3 Achieving Optimal Performance via a Hybrid Approach

In the previous sections, we described the benefits and ackslihe entirely GPU-based and en-
tirely CPU-based approaches. Now, we describe a hybrid GPU-method that optimizes perfor-
mance of the algorithm by taking advantages of the strerafteach approach. This hybrid method
builds the first few levels of the quadtree on the CPU by udigsequential method described in
Section 4.2. Then, at a user-defirsdtch-level, we transfer the array of parent nodes to the GPU
and begin constructing the remaining levels of the tree er@GRU until every child in the current
sublevel is either null or a leaf (a node containing max or fewer datapoints).

4.4 Memory Usage and Allocation

The memory model on the GPU is entirely independent of théite@CPU and thus certain decisions
about memory allocation and transfer of data from and to the @ust be made for both the entirely
GPU-based and hybrid implementations. We choose to tradafa to the GPU only once: when
we first begin GPU construction. Thus, in the entirely GPQdshapproach, we first copy the root
and the global data-array to the GPU and in the hybrid approme copy the array of nodes from
the previous level and the global data-array to the GPU wheneach the switch-level. The array
of level arrays is updated after each level on the GPU is coctetd by assigning to it the pointer to
that level on the GPU. Once the entire tree is constructedetpointers are used to copy the levels
onto the CPU.

For the GPU implementations, because each level of the egragins on the GPU, we are unable
to know exactly how many nodes in each level are leafs of g dr null nodes. Thus, in building
the next level, we typically overestimate the number of sadehe level by allocating space féf
nodes, where is the number of the level we're on (for example, level 0 is pased of one node,
the root). While this space-time tradeoff for memory usageks well for small datasets, for larger
datasets the GPU does not have enough memory to containdbhesized level arrays.

In this situation, when the GPU does not have enough memaldoate the next level with space
for 4¢ nodes, all of the level arrays stored on the GPU are copiealtbetCPU and freed from the
GPU memory. We then find the non-terminal nodes from the aroasesponding to the parents of
the level we seek to build, copy these non-terminal nodek tmathe GPU, allocate space for four
times as many child nodes, and construct the level on the GBtkxample, if we found that in the
parent node array there were four non-terminal nodes, wg aoly this subset of the array to the
GPU and allocate a child array for sixteen nodes on the GPU.

After this data-transfer off of the GPU has taken place, ther&thm proceeds as before, allocated
four times as many children for each node in the parent amathé example, the next child array
would consist of sixty-four children), and would executetmer data-transfer step if the GPU were
to once again run out of memory.

Construction Time: CPU-GPU Hybrid vs. CPU-only
M cPu-only Il CPU-GPU Hybrid

50
40
30

20

construction time (s)

10

0 5,000,000 10,000,000 15,000,000
number of paints

Figure 6:Quadtree construction times in hybrid and CPU-Only implementations. For larger datasets, the
speedup of the CPU-GPU hybrid implementation is constaethybrid implementation is about twice as fast
on average as the CPU-only implementation.

5 Experimental Results

We implement the CPU-only approach to the algorithm in Caigisort() for the quadtree sort phase
of the algorithm. For parallelization on the GPU, we use NMB CUDA with C-bindings and
write two independent kernels: the first for bounding boXxgrssent and the second for quadtree
sort and start/end index assignment. To evaluate the peafuce of the hybrid CPU-GPU model,
we ran several experiments comparing it against the purely-8ased version of the algorithm.

We ran timed-trials using datasets of LIDAR points rangimgize from several hundred thousands
of points to over fourteen-million points. Each timed expemt was run for ten trials on each
dataset. The significance of our results are threefold: avgat performance of the hybrid model
over the entirely CPU-based version, importance of chap#ie optimal switch-level for GPU
construction, and the significance of the difference in tin@ant of time for system calls between
the two versions.

5.1 CPU-GPU Hybrid vs. CPU-Based Implementation

We conducted several experiments of different sized distaarging from just over 500,000 points
to over 14 million points to determine the speedup achieyeniplementing the algorithm using
the hybrid approach. We timed and compared the quadtredraotisn portion of computation on
each dataset for the hybrid and CPU-based implementatifims results of these experiments are
shown in Figure 6. Our results show that the hybrid implemto of our quadtree construction
algorithm exhibit speedup of approximately 2.0 over theusedjal, CPU-only implementation.

5.2 Determining the Optimal Switch Level for Hybrid Constru ction

Throughout our experiments, we discovered that determiaimd using the optimal switch-level
in the hybrid implementation is the key to achieving the hesssible performance of the al-

10

gorithm. Thus, we sought to determine what switch-levelange of switch-levels are optimal
for the types of problems we are dealing with. We conducte@rées of experiments which
time the quadtree construction phase of the algorithm foioua switch-levels. The amount of
time required for quadtree construction for various sizathsets using different switch-levels.

We ran ten trials of each switch-level for

Optimal Switch Levels datasets which ranged in size from about
Number of Switch Level | Construction | 500,000 points to over 29-million points. The
Points (millions) Time (sec) | results, which are depicted in Figure 7 indicate
; i:gggz that the optimal switch-level is between level
1.0 3 1.00388 two and four. With earlier switch-levels being
4 1.99625 better for larger datasets.
1 12.9965
5.4 2 9.00711 . _ .
3 10.0037 5.3 Differences in System Time
4 11.9986
1 22.0032 Finally, in conducting these timed tests on dif-
10.4 g 12'8822 ferent datasets, we computed how much time
4 21:0023 was spent overall in system and user times.

We find that the time involving system calls is
Figure 7:Determining the optimal switch-level. Opti- higher in the hybrid implementation than in the
mal switch-level times are shown in bold. The results @ntirely CPU-based algorithm:0% of the to-
our experiments indicate that the optimal switch-level i[%d execution time (from reading in the data file
always in the first three levels. .

to complete construction of the quadtree) was
from system calls in the hybrid implementation versus amaye 0f2% of time for system calls in
the CPU-only implementation.

The difference in system time required in the two implemioite can be attributed to the amount
of time required to transfer data between the CPU and GPU.Meroe that when implemented at
the optimal switch-level, the time for system calls corsisliy comprised 0% of the total execution
time. From this result, we may infer that what makes a paeicswitch-level optimal is that sys-
tem calls required for transfer to and from the GPU for theegigwitch-level remains at the ideal
proportion of the total computation.

Further, this result suggests that any increase in the amoduransfer between the CPU and the
GPU to reduce unused memory allocations for child nodes eraRU (as described in Section
4.4) would increase the total time of the algorithm by usingrecreasing number of system calls.
However, future research must be conducted to investighéther higher amounts of data transfer
would result increased computation time.

6 Future Work

There are many possible directions for future work on thedtrea-sort algorithm for quadtree
construction on the GPU using a hybrid approach. One impbftgure direction will seek to
parallelize computation on the CPU. Currently, computatia the CPU, specifically looping over
each parent node in a given level, is done in an entirely sggienanner. This results in the CPU-
computation dominating most of the time for quadtree canasion. Instead of relying on a purely
sequential CPU implementation, in the future we intend iiizatthe multi-core CPUs available on
many modern computers to parallelize this computationthéamore, the process for sorting the
data on the CPU could also be parallelized, which would asalt in lessened computation time
on the CPU.

11

One design choice made for this particular project was tacedhe amount of data transferred be-
tween the CPU and the GPU at any given level. This came at {enae of a significant amount of
wasted space on the GPU. One possible next step for furttieninimg the hybrid implementation
will involve determining the costs and benefits of transfeydata off of the GPU in order to deter-
mine more accurately the amount of space necessary to t@lfarechild nodes in the next level of
the tree.

Finally, one other significant task that remains is to motlify algorithm for larger datasets whose
points cannot fit into memory and thus necessitate readimggpfyom disk in pieces and reading
and writing the levels of the quadtree to disk as computaiimpurs. For these datasets, we seek to
implement methods for transferring levels off of the GPU &RU to files on disk which can then
be read back in pieces in order to construct subsequenslef/die quadtree.

7 Conclusion

Our work seeks to extend and improve the performance of guithm for digital elevation model-
ing proposed in [2] by parallelizing the segmentation ptedbe algorithm—quadtree construction.
We introduce a new method for constructing quadtrees on fd & parallel which relies on a
level-by-level approach with parallelism implementedtstitat the children of each parent node
from the current level are computed simultaneously. Therélgn reduces the problem of quadtree
construction to a sorting problem in which nodes do not eihlicontain the data they correspond
to but to their start and end indices of their portion of theada a global quadtree-sorted list of all
of the datapoints.

We propose a hybrid CPU-GPU approach to the problem of qeagtrallelization which involves
building the first several levels of the tree on the CPU setjainand then transferring the data to
the GPU to compute the remaining levels of the tree. We detraiaghat this model is effective in
reducing the amount of time necessary for quadtree corigtniend that it is in fact twice as fast as
implementing the algorithm entirely on the CPU.

8 Reflections on Our Work

The original goal of our project was to parallelize not onbagtree construction but also a form of
interpolation for created grid DEMs involving Voronoi diagns. Due to the extremely steep learn-
curve of the CUDA programming model, including the blacke¢bmture of computations taking
place on the GPU, we ran into several difficulties along thg. wa

The most significant of these hurdles was in determining #st Wway to represent the data structure
on the GPU. The memory-model of the GPU does not allow for e@yipulation and computation
on pointers to pointers. Thus, we had to flatten out our datatstre and eventually came to a break-
through in the quadtree-sort data structure representitiovhich nodes do not contain pointers to
the data they contain, but instead this data is representedsktart and end index into the global,
guadtree-sorted data-array.

References

[1] CUDA Programming Guide Version 3.0.

[2] P. K. Agarwal, L. Arge, and A. Danner. From point cloud todgDEM: A scalable approach.
In Andreas Riedl, Wolfgang Kainz, and Gregory Elmes, edit@®rogress in Spatial Data

12

Handling. 12th International Symposium on Spatial Data Handling, pages 771-788. Springer-
Verlag, 2006.

[3] R.A. Finkel and J.L. Bentley. Quad trees: A data struefiar retrieval on composite keyActa
Informatica, 4(1), 1974.

[4] Christian Lauterbach, Michael Garland, ShubhabratagBpta, David Luebke, and Dinesh
Manocha. Fast BVH construction on GPUSJROGRAPHICS 2009, 28(2), 2009.

[5] Fangju Wang. Relational-linear quadtree approachvar-timensional spatial representation
and manipulationl EEE Transactions on Knowledge and Data Engineering, 3(1), 1991.

13

