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Abstract. We address the problem of joint feature selection in multi-
ple related classification or regression tasks. When doing feature selection
with multiple tasks, usually one can “borrow strength” across these tasks
to get a more sensitive criterion for deciding which features to select. We
propose a novel method, the Multiple Inclusion Criterion (MIC), which
modifies stepwise feature selection to more easily select features that are
helpful across multiple tasks. Our approach allows each feature to be
added to none, some, or all of the tasks. MIC is most beneficial for se-
lecting a small set of predictive features from a large pool of potential
features, as is common in genomic and biological datasets. Experimental
results on such datasets show that MIC usually outperforms other com-
peting multi-task learning methods not only in terms of accuracy but
also by building simpler and more interpretable models.

1 Introduction

We consider the problem of feature selection for a set of related tasks which
are expected to partially share common sets of predictive features. When one is
trying to predict a set of related responses (“tasks”), be they multiple clinical
outcomes for patients or growth rates under different conditions for yeast strains,
it may be possible to “borrow strength” by sharing information between the
models for the different responses.

The problem of building shared models for multiple related tasks is popularly
known as “Multi-Task Learning” or “Transfer Learning” and has been studied
extensively [1–7]. To give a couple examples: [2] do joint empirical risk minimiza-
tion and treat the multi-response problem by introducing a low-dimensional sub-
space which is common to all the response variables. [7] construct a multivariate
Gaussian prior with a full covariance matrix for a set of “similar” supervised
learning tasks and then use semidefinite programming (SDP) to combine these
estimates and learn a good prior for the current learning task. Some traditional
methods such as neural networks also share parameters between the different
tasks [1]. However, none of the above methods does feature selection. This limits
their applicability in domains such as genomics, where often only a handful of
the thousands of potential features are predictive so that feature selection is very
important.



There has been some work on feature selection for multi-task learning. [8]
uses maximum-entropy discrimination to select a single subset of features across
multiple SVM regression or classification problems that share a common set of
potential features. Several other papers work within the framework of regularized
regression, taking the penalty term to be an ℓ1 norm over features of an ℓp norm
over the coefficients for each feature (an “ℓ1 − ℓp” penalty). [9] consider the
case p = ∞, while [4, 10] use p = 2. [4] show that the general subspace selection
problem can be formulated as an optimization problem involving the trace norm.
[10] focus on the case where the trace norm is not required and instead use a
homotopy-based approach to evaluate the entire regularization path efficiently
[11]. The idea behind ℓ1 − ℓp penalties is that when p > 1, the cost of making
a coefficient nonzero is smaller for features that are shared across more tasks.
Indeed, for either p = 2 or p = ∞, these algorithms tend in practice to yield
nonzero coefficients for all of the tasks associated with features that get selected.

Our approach is different. Unlike the above algorithms, we not only select
features but select tasks for each feature. This amounts to an ℓ0 − ℓ0 penalty
(“two-level” sparsity), with one ℓ0 penalty on features and the other on the as-
sociated tasks.4 Optimization with an exact ℓ0 penalty requires subset selection,
known to be NP-hard [12], but a close solution can be found by stepwise search.
Though approximate, stepwise ℓ0 methods generally yield sparser models than
exact ℓ1 methods [13].

In this paper, we use the information-theoretic Minimum Description Length
(MDL) principle [14] to derive an efficient coding scheme for multitask stepwise
regression that we call the Multiple Inclusion Criterion (MIC). MIC gives im-
proved performance in prediction for multiple related tasks when there are many
candidate features of which only a few are predictive and the predictive features
are shared by different tasks. Because it allows each feature to be considered rel-
evant for only a subset of the tasks, MIC achieves sparser models than methods
which always share features across all tasks.

The rest of the paper is organized as follows. After outlining the notation
used, we describe the MIC coding scheme and its properties in detail. We then
present experimental results on synthetic and real datasets, and conclude.

2 Multiple Inclusion Criterion (MIC) for Feature
Selection

2.1 Notation Used

The symbols used throughout this section are defined in the Table 1. All the
values in the table are given by data except m∗, which is unknown. In particular,
we have an n × h response matrix Y, with a shared n × m feature matrix X.

4 Another case of two-level sparsity could be an ℓ1 − ℓ1 penalty, but as [10] note, this
is equivalent to a single ℓ1 penalty over the entire set of features and fails to share
information across tasks.



Table 1. Symbols used and their definitions.

Symbol Meaning

n Number of observations
m Number of candidate features
m∗ Number of beneficial features
h Total number of tasks
k Number of tasks into which a feature

has been added
j Index of feature
ν Index of observation

2.2 A Brief Overview of MIC

In general, penalized likelihood methods like MIC aim to minimize an objective
function of the form

score = − log(likelihood of Y given X) + F × q, (1)

where q is the current number of features in the model. As [15] notes, various
penalties F have been proposed, including F = 1, corresponding to AIC (Akaike
Information Criterion), F = ln n

2
, corresponding to BIC (Bayesian Information

Criterion), and F = lnm, corresponding to RIC (Risk Inflation Criterion—
similar to a “Bonferroni correction”) [16].

Each of these penalties can be interpreted within the framework of the Mini-
mum Description Length (MDL) principle [14]. MDL envisions a “sender,” who
knows X and Y, and a “receiver,” who knows only X. In order to transmit Y us-
ing as few bits as possible, the sender encodes not the raw Y matrix but instead
a model for Y given X, followed by the residuals of Y about that model. The
length S of this message, in bits, is called the description length and is the sum
of two components. The first is SE , the number of bits for encoding the residual
errors, which according to standard MDL is given by the negative log-likelihood
of the data given the model; note that this is the first term of (1). The second
component, SM , is the number of bits used to describe the model itself and can
be seen as corresponding to the second term of (1). We use the phrase total

description length (TDL) to denote the combined length of the message for all
h tasks.

In the setting of multiple responses,5 we select features for the h tasks si-
multaneously to minimize S. Thus, when we evaluate a feature for addition into
the model, we want to maximize the reduction of TDL ∆Sk incurred by adding

5 We interchangeably use the terms “multiple responses” and “multiple tasks,” though
our setting is more specific than that of standard multitask problems in which each
task may have a different feature matrix; we assume all tasks share the same feature
matrix.



that feature to a subset k of the h tasks (1 ≤ k ≤ h):

∆Sk = ∆Sk
E − ∆Sk

M

where ∆Sk
E > 0 is the reduction in residual-error coding cost due to the data

likelihood increase given the new feature, and ∆Sk
M > 0 is the increase in model

cost to encode the new feature.6

As will be seen in Section 2.3, MIC’s model cost includes a component for
coding feature coefficients that resembles the AIC or BIC penalty, plus a com-
ponent for specifying which features are present in the model that resembles the
RIC penalty.

In Section 2.4 we compare three approaches to stepwise regression with mul-
tiple tasks: (1) a feature is added to all tasks or none; (2) features are added
independently to each task (i.e., no transfer); or (3) features can be added to a
subset of tasks but the tasks share strength. We first describe a code for approach
(3) below.

2.3 Coding Schemes for MIC

Code ∆Sk
jE Let E be the residual error matrix:

E = Y − Ŷ,

where Y and Ŷ are the n × h response and prediction matrices, respectively.
∆Sk

jE is the decrease in negative log-likelihood that results from adding fea-
ture j to some subset k of the h tasks. If all the tasks were independent, then
∆Sk

jE would simply be the sum of the changes in negative log-likelihood for each
of the h models separately. However, we may want our model to allow for nonzero
covariance among the tasks. This is particularly true for stepwise regression, be-
cause in the first iterations of a stepwise algorithm, the effects of features not
present in the model show up as part of the “noise” error term, and if two tasks
share a feature not yet in the model, the portion of the error term due to that
feature will be the same.

Thus, letting ǫν , ν = 1, 2, . . . , n, denote the error for the νth row of E, we

assume ǫν
i.i.d.

∼ N (0, Σ), with Σ an h × h covariance matrix. In other words,

P (ǫν) =
1

√

(2π)h|Σ|
exp

(

−
1

2
ǫT
ν Σ−1ǫν

)

in which (·)T , (·)−1, and | · | are the matrix transpose, inverse, and determinant,
respectively. Therefore,

SE = − log

n
∏

ν=1

P (ǫν)

=
n

2
log

(

(2π)h|Σ|
)

+
1

2 ln 2

n
∑

ν=1

ǫT
ν Σ−1ǫν ,

(2)

6 ∆Sk
E is always greater than zero, because even a spurious feature will slightly increase

the data likelihood.



where the 1

ln 2
factor appears because we use logarithm base 2 (here and through-

out the remainder of the paper). Note that the superscript k in ∆Sk
jE indicates

that the reduction is incurred by adding a new feature to k tasks, but the cal-
culation ∆Sk

jE is over all h tasks; i.e., the whole residual error E is taken into
account.

Code ∆Sk
jM To describe ∆Sk

jM when a feature is added, MIC uses a three-part
coding scheme:

∆Sk
jM = ℓI + ℓH + ℓ

θ̂
,

where ℓI is the number of bits needed to describe which feature is being added,
ℓH is the cost of specifying the subset of k of the h task models in which to
include the feature, and ℓ

θ̂
is the description length of the k nonzero feature

coefficients. We now consider different coding schemes for ℓI , ℓH , and ℓ
θ̂
.

Code ℓI For most data and feature sets, little is known a priori about which
features will be beneficial.7 We therefore assume that if a feature xj is beneficial,
its index j is uniformly distributed over {1, 2, . . . , m}. This implies ℓI = log m

bits to encode the index, reminiscent of the RIC penalty for equation (1).
RIC often uses no bits to code the coefficients of the features that are added,

based on the assumption that m is so large that the log m term dominates. This
assumption is not valid in the multiple response setting, where the number of
models h could be large. If a feature is added to k of the h tasks, the cost of
encoding the k coefficients may be a major part of the cost. We describe the cost
to code a coefficient below.

Code ℓ
θ̂

This term corresponds to the number of bits required to code the
value of the coefficient of each feature. We could use either AIC or the more
conservative BIC to code the coefficients. As explained below, we use 2 bits for
each coefficient, similar to AIC.

Given a model, MDL chooses the values of the coefficients that maximize the
likelihood of the data. [18] proposes approximating θ̂, the Maximum Likelihood
Estimate (MLE), using a grid resolved to the nearest standard error. That is,

instead of specifying θ̂, we imagine encoding a rounded-integer value of θ̂’s z-
score ẑ, where θ̂ = θ̂0 + ẑ SE(θ̂), with θ̂0 being the default, null-hypothesis value

(here, 0) and SE(θ̂) being the standard error of θ̂.
We assume a “universal prior” distribution for ẑ, in which half of the prob-

ability is devoted to the null value θ̂0 and the other half is concentrated near
θ̂0 and decays slowly. In particular, for θ̂ 6= θ̂0, the coding cost is 2 + log+ |ẑ|
+ 2 log+ log+ |ẑ| bits, where log+ denotes logarithm base 2 if the argument is
positive, else 0. This prior distribution makes sense in hard problems of feature
selection where beneficial features are just marginally significant. Since ẑ is quite
small in such hard problems, the 2 bits will dominate the other two terms. In
fact, we simply assume ℓ

θ̂
= 2.

7 Following [17], we define a “beneficial” feature as one which, if added to the model,
would reduce error on a hypothetical infinite test set.



Code ℓH In order to specify the subset of task models that include a given
feature, we encode two pieces of information: First, how many of the tasks (k)
have the feature? Second, which subset of k tasks are those?

One way to encode k is to use log h bits to specify an integer in {1, 2, . . . , h};
this implicitly corresponds to a uniform prior distribution on k. However, since
we generally expect that smaller values of k are more likely, we instead use
coding lengths inspired by the “idealized universal code for the integers” of [19]
and [18]: The cost to code k is log∗ k + ch, where log∗ k = log+ k + log+ log+ k +
log+ log+ log+ k + . . ., and ch is the constant required to normalize the implied
probability distribution over {1, 2, . . . , h}. c∞ ≈ log 2.865 ≈ 1.516 [18], but for
h ∈ {5, . . . , 1000}, ch ≈ 1.

Given k, there are
(

h
k

)

possible subsets of tasks. Taking the subsets to have
some pre-specified ordering, we can list the index of our desired subset within
that ordering using log

(

h
k

)

bits.
Thus, in total, we have

ℓH = log∗ k + ch + log

(

h

k

)

.

2.4 Comparison of the Coding Schemes

The preceding discussion outlined a coding scheme for what we might call “Par-
tially Dependent MIC,” or “Partial MIC,” in which models for different tasks
can share some or all features.

As suggested at the end of Section 2.2, we can also consider a “Fully De-
pendent MIC,” or “Full MIC,” scheme in which each feature is shared across all
or none of the task models. This amounts to a restricted Partial MIC in which
k = 0 or k = h for each feature. The advantage comes in not needing to specify
the subset of tasks used, saving ℓH bits for each feature in the model; however,
Full MIC may need to code more coefficient values than Partial MIC.

A third coding scheme is simply to specify each task model in isolation from
the others. We call this the “RIC” approach, because each model pays log m

bits for each feature to code its index; this is equivalent, up to the base of the
logarithm, to the F = lnm penalty in equation 1. (However, we include an
additional cost of ℓ

θ̂
bits to code a coefficient.) If the sum of the two costs is

sufficiently less than the bits saved by the increase of the data likelihood from
adding the feature to the model, the feature will be added to the model. RIC
assumes that the beneficial features are not significantly shared across tasks.

We compare the relative coding costs under these three coding schemes for
the case where we evaluate a hypothetical feature, xj , that is beneficial for k

tasks and spurious for the remaining h− k tasks. Suppose that Partial MIC and
RIC both add the feature to only the k beneficial tasks, while Full MIC adds it
to all h tasks. We assume that if the feature is added, the three methods save
approximately the same number of bits in encoding residual errors, ∆Sk

E . This
would happen if, say, the additional h− k coefficients that Full MIC adds to its
models save a negligible number of residual-coding bits (because those features



are spurious) and if the estimate for Σ is sufficiently diagonal that the negative
log-likelihood calculated using (2) for Partial MIC approximately equals the sum
of the negative log-likelihoods that RIC calculates for each response separately.

Table 2 shows that RIC and Partial MIC are the best and the second best
coding schemes when k = 1, and that their difference is on the order of log h.
Full MIC and Partial MIC are the best and the second best coding schemes
when k = h, and their difference is on the order of log∗ h. Partial MIC is best
for k = h

4
.

Table 2. Costs in bits for each of the three schemes to code a model with k = 1,
k = h

4
, and k = h nonzero coefficients. m ≫ h ≫ 1, ℓI = log m, ℓθ̂ = 2, and for

h ∈ {5, . . . , 1000}, ch ≈ 1. Examples of these values for m = 2,000 and h = 20 appear
in brackets; the smallest of the costs appears in bold.

k Partial MIC Full MIC RIC

1 log m + ch + log h + 2 [18.4] log m + 2h [51.0] log m + 2 [13.0]
h
4

log m + log∗
`

h
4

´

+ ch + log
`

h
h/4

´

+ h
2

[39.8] log m + 2h [51.0] h
4

log m + h
2

[64.8]

h log m + log∗ h + ch + 2h [59.7] log m + 2h [51.0] h log m + 2h [259.3]

2.5 Stepwise Search Method

To find a model that minimizes TDL, we use a modified greedy stepwise
search as shown in Algorithm 1. For each feature, we evaluate the change in
TDL that would result from adding that feature to the model with the optimal
number of associated tasks. We add the best feature and then recompute the
changes in TDL for the remaining features. This continues until there are no
more features that would reduce TDL if added. The number of evaluations of
features for possible addition is thus O(mms), where ms is the number of features
eventually added.

To select the optimal number of task models (k) in which to include a given
feature, we again use a stepwise-style search. In this case, we evaluate the re-
duction in TDL that would result from adding the feature to each task, add
the feature to the best task, recompute the reduction in TDL for the remaining
tasks, and continue.8 However, unlike a normal stepwise search, we continue this
process until we have added the feature to all h task models. The reason for this
is two-fold. First, because we want to borrow strength across tasks, we need to
avoid overlooking cases where the correlation of a feature with any single task

8 A stepwise search that re-evaluates the quality of each task at each iteration is
necessary because, if we take the covariance matrix Σ to be nondiagonal, the values
of the residuals for one task may affect the likelihood of residuals for other tasks. If
we take Σ to be diagonal, as we do in Section 3, then an O(h) search through the
tasks without re-evaluation suffices.



Algorithm 1 Partial MIC

1: Include the intercept (feature number 1) in all h response models.
2: remaining features = {2, . . . , m}.
3: keep adding features = true.
4: while keep adding features do
5: for j in remaining features do
6: // Find the best subset of response models to which to add feature j.
7: for k = 1 to h do
8: Try including feature j in the best k response models. (We greedily assume

that the best k responses are the union of the best k − 1 responses with the
remaining response that, if included, would most increase likelihood.)

9: Compute ∆Sk
jE , the decrease in data residual cost, and ∆Sk

jM , the resulting
increase in model-coding cost, relative to not including feature j in any
response models.

10: end for
11: Let kj be the value of k that maximizes ∆Sk

jE − ∆Sk
jM .

12: ∆Sj := ∆S
kj

jE − ∆S
kj

jM .
13: end for
14: Let j∗ be the feature j that maximizes ∆Sj , the reduction in TDL for adding

feature j.
15: if ∆Sj∗ > 0 then
16: Add feature j∗ to the appropriate kj∗ response models.
17: remaining features = remaining features − {j∗}.
18: else
19: keep adding features = false.
20: end if
21: end while



is insufficiently strong to warrant addition, yet the correlations with all of the
tasks are. Second, the log

(

h

k

)

term in Partial MIC’s coding cost does not increase
monotonically with k, so even if adding the feature to an intermediate number of
tasks does not look promising, adding it to all of them might still be worthwhile.
Thus, when evaluating a given feature, we compute the description length of
the model O(h2) times. Since we need to identify the optimal k for each feature
evaluation, the entire algorithm requires O(h2mms) evaluations of TDL.

While not shown explicitly in Algorithm 1, we use two branch-and-bound-
style optimizations to cut this cost significantly in practice:

1. Before searching through subsets of responses to find the optimal subset for
each feature, we make an O(m) sweep through the features to compute an
upper bound on the decrease in TDL that could result from adding that
feature as

(decrease in TDL if the feature is added to all h response models) − log m.

(3)

Here, the first term is an upper bound on the benefit of adding the feature
to the optimal number of response models (since adding a feature can only
make a model fit better), and the second term underestimates the model
cost of adding the feature, regardless of how many response models would
actually be used. We sort the features in decreasing order by this upper
bound, and when we reach features whose upper bounds are less than the
best actual decrease in TDL observed so far, we terminate the search early.

2. For the stepwise search over responses, we can bound from above the poten-
tial benefit of adding the feature to k response models as

(decrease in TDL if the feature is added to all h response models)

−

(

log∗ k + ck + log

(

h

k

)

+ 2k

)

,
(4)

where the subtracted term represents the coding cost of including the feature
in k response models. We can stop the search early when no higher value of
k has an upper bound that exceeds the best reduction in TDL seen so far
for any feature’s response subset.9

Although we did not attempt to do so, it may be possible to formulate MIC
using a regularization path, or homotopy, algorithm of the sort that have become
popular for performing ℓ1 regularization without the need for cross-validation
(e.g., [20]). If possible, this would be significantly faster than stepwise search.

3 Experimental Results

This section evaluates the MIC approach on three synthetic datasets, each of
which is designed to match the assumptions of, respectively, the Partial MIC,

9 We say “no higher value of k” rather than “the next higher value of k” because (4)
does not decrease monotonically with k, due to the log

`

h
k

´

quantity.



Full MIC, and RIC coding schemes described in Section 2.4. We also test on two
biological data sets, a Yeast Growth dataset [21], which consists of real-valued
growth measurements of multiple strains of yeast under different drug conditions,
and a Breast Cancer dataset [22], which involves predicting prognosis, ER status,
and three other descriptive variables from gene-expression values for different cell
lines.

We compare the three coding schemes of Section 2.4 against two other mul-
titask algorithms: “AndoZhang” [2] and “BBLasso” [10], as implemented in the
Berkeley Transfer Learning Toolkit [23]. We did not compare MIC with other
methods from the toolkit as they all require the data to have additional struc-
ture, such as meta-features [6, 7], or expect the features to be frequency counts,
such as for the Hierarchical Dirichlet Processes algorithm. Also, none of the
neglected methods does feature selection.

For AndoZhang we use 5-fold CV to find the best value of the parameter
that [2] call h (the dimension of the subspace Θ, not to be confused with h as
we use it in this paper). We tried values in the range [1, 100] as is done in [2].

MIC as presented in Section 2.3 is a regression algorithm, but AndoZhang
and BBLasso are both designed for classification. Therefore, we made each of our
responses binary 0/1 values before applying MIC with a regular regression likeli-
hood term. Once the features were selected, however, we used logistic regression
applied to just those features to obtain MIC’s actual model coefficients.10

As noted in Section 2.3, MIC’s negative log-likelihood term can be computed
with an arbitrary h × h covariance matrix Σ among the h tasks. On the data
sets in this paper, we found that estimating all h2 entries of Σ could lead to
overfitting, so we instead took Σ to be diagonal. Informal experiments showed
that estimating Σ as a convex combination of the full and diagonal estimates
could also work well.

3.1 Evaluation on Synthetic Datasets

We created synthetic data according to three separate scenarios—called Partial,
Full, and Independent. For each scenario, we generated a matrix of continuous
responses as

Yn×h = Xn×mwm×h + ǫn×h

where m = 2,000 features, h = 20 responses, and n = 100 observations. Then,
to produce binary responses, we set to 1 those response values that were greater
than or equal to the average value for their column and set to 0 the rest; this
produced a roughly 50-50 split between 1’s and 0’s because of the normality of
the data. Each nonzero entry of w was i.i.d. N (0, 1), and entry of ǫ was i.i.d.
N (0, 0.1), with no covariance among the ǫ entries for different tasks. Each task
had m∗ = 4 beneficial features, i.e., each column of w had 4 nonzero entries.

The scenarios differed according to the distribution of the beneficial features
in w.

10 This contrasts with BBLasso, which in the default Transfer Learning Toolkit imple-
mentation uses the original regression coefficients (mostly zeros).



– In the Partial scenario, the first feature was shared across all 20 responses,
the second was shared across the first 15 responses, the third across the
first 10 responses, and the fourth across the first 5 responses. Because each
response had four features, those responses (6 − 20) that did not have all
of the first four features had other features randomly distributed among the
remaining features (5, 6, . . . , 2000).

– In the Full scenario, each response shared exactly features 1 − 4, with none
of features 5 − 2000 being part of the model.

– In the Independent scenario, each response had four random features among
1, . . . , 2000.

For the synthetic data, we report precision and recall to measure the quality
of feature selection. This can be done both at a coefficient level (Was each
nonzero coefficient in w correctly identified as nonzero, and vice versa?) and at an
overall feature level (For features with any nonzero coefficients, did we correctly
identify them as having nonzero coefficients for any of the tasks, and vice versa?).
Note that Full MIC and BBLasso always make entire rows of their estimated
w matrices nonzero and so tend to have larger numbers of nonzero coefficients.
Table 3 shows the performance of each of the methods on five instances of the
Partial, Full, and Independent synthetic data sets. On the Partial data set,
Partial MIC performed the best, closely followed by RIC; on the Full synthetic
data, Full MIC and Partial MIC performed equally well; and on the Independent
synthetic data, the RIC algorithm performed the best closely followed by Partial

MIC. It is also worth noting that the best-performing methods tended to have
the best precision and recall on coefficient selection. The performance trends of
the three methods are in consonance with the theory of Section 2.4.

The table shows that only in one of the three cases does one of these methods
compete with MIC methods. BBLasso on the Full synthetic data shows compa-
rable performance to the MIC methods, but even in that case it has a very
low feature precision, since it added many more spurious features than the MIC
methods.

3.2 Evaluation on Real Datasets

This section compares the performance of MIC methods with AndoZhang and
BBLasso on a Yeast dataset and Breast Cancer dataset. These are typical of bi-
ological datasets in that only a handful of features are predictive from thousands
of potential features. This is precisely the case in which MIC outperforms other
methods. MIC not only gives better accuracy but does so by choosing fewer
features than BBLasso’s ℓ1 − ℓ2-based approach.

Yeast Dataset Our Yeast dataset comes from [21]. It consists of real-valued
growth measurements of 104 strains of yeast (n = 104 observations) under 313
drug conditions. In order to make computations faster, we hierarchically clus-
tered these 313 conditions into 20 groups using correlation as the similarity



Table 3. Test-set accuracy, precision, and recall of MIC and other methods on 5
instances of various synthetic data sets generated as described in Section 3.1. Standard
errors are reported over each task; that is, with 5 data sets and 20 tasks per data set,
the standard errors represent the sample standard deviation of 100 values divided by√

100 (except for feature-level results, which apply only to entire data sets and so are
divided by

√
5). Baseline accuracy, corresponding to guessing the majority category, is

roughly 0.5. Note: AndoZhang’s NA values are due to the fact that it does not explicitly
select features.

Method True Model Partial MIC Full MIC RIC BBLasso AndoZhang

Partial Synthetic Dataset

Test error 0.07 ± 0.00 0.10 ± 0.00 0.17 ± 0.01 0.12 ± 0.01 0.19 ± 0.01 0.50 ± 0.02
Coeff. precision 1.00 ± 0.00 0.84 ± 0.02 0.26 ± 0.01 0.84 ± 0.02 0.04 ± 0.00 NA

Coeff. recall 1.00 ± 0.00 0.77 ± 0.02 0.71 ± 0.03 0.56 ± 0.02 0.81 ± 0.02 NA
Feature precision 1.00 ± 0.00 0.99 ± 0.01 0.97 ± 0.02 0.72 ± 0.05 0.20 ± 0.03 NA

Feature recall 1.00 ± 0.00 0.54 ± 0.05 0.32 ± 0.03 0.62 ± 0.04 0.54 ± 0.01 NA

Full Synthetic Dataset

Test error 0.07 ± 0.00 0.08 ± 0.00 0.08 ± 0.00 0.11 ± 0.01 0.09 ± 0.00 0.45 ± 0.02
Coeff. precision 1.00 ± 0.00 0.98 ± 0.01 0.80 ± 0.00 0.86 ± 0.02 0.33 ± 0.03 NA

Coeff. recall 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.63 ± 0.02 1.00 ± 0.00 NA
Feature precision 1.00 ± 0.00 0.80 ± 0.00 0.80 ± 0.00 0.36 ± 0.06 0.33 ± 0.17 NA

Feature recall 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 NA

Independent Synthetic Dataset

Test error 0.07 ± 0.00 0.17 ± 0.01 0.36 ± 0.01 0.13 ± 0.01 0.35 ± 0.01 0.49 ± 0.00
Coeff. precision 1.00 ± 0.00 0.95 ± 0.01 0.06 ± 0.01 0.84 ± 0.02 0.02 ± 0.00 NA

Coeff. recall 1.00 ± 0.00 0.44 ± 0.02 0.15 ± 0.02 0.58 ± 0.02 0.43 ± 0.02 NA
Feature precision 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.83 ± 0.02 0.30 ± 0.05 NA

Feature recall 1.00 ± 0.00 0.44 ± 0.02 0.14 ± 0.02 0.58 ± 0.03 0.42 ± 0.06 NA

measure. Taking the average of the values in each cluster produced h = 20 real-
valued responses (tasks), which we then binarized into two categories: values at
least as big as the average for that response (set to 1) and values below the aver-
age (set to 0).11 The features consisted of 526 markers (binary values indicating
major or minor allele) and 6,189 transcript levels in rich media for a total of
m = 6,715 features.

Table 4 shows test errors from 5-fold CV on this data set. As can be seen from
the table, Partial MIC performs better than BBLasso and AndoZhang. RIC and
Full MIC perform slightly worse than Partial MIC, underscoring the point that
it is preferable to use a more general MIC coding scheme compared to Full MIC
or RIC. The latter methods have strong underlying assumptions, which cannot
always correctly capture sharing across tasks. Like Partial MIC, AndoZhang did
well on this data set; however, because the algorithm scales poorly with large

11 The split was not exactly 50-50, as the data were sometimes skewed, with the mean
falling above or below the median.



Table 4. Accuracy and number of coefficients and features selected on five folds of CV
for the Yeast and Breast Cancer data sets. For the Yeast data, h = 20, m = 6,715,
n = 104. For the Breast Cancer data, h = 5, m = 5,000, n = 100. Standard errors
are over the five CV folds; i.e., they represent (sample standard deviation) /

√
5. Note:

AndoZhang’s NA values are due to the fact that it does not explicitly select features.

Method Partial MIC Full MIC RIC BBLasso AndoZhang

Yeast Dataset

Test error 0.38 ± 0.04 0.39 ± 0.04 0.41 ± 0.05 0.43 ± 0.03 0.39 ± 0.03
Num. coeff. sel. 22 ± 4 64 ± 4 9 ± 1 1268 ± 279 NA
Num. feat. sel. 4 ± 0 3 ± 0 9 ± 1 63 ± 14 NA

Breast Cancer Dataset

Test error 0.33 ± 0.08 0.37 ± 0.08 0.36 ± 0.08 0.33 ± 0.08 0.44 ± 0.03
Num. coeff. sel. 3 ± 0 11 ± 1 2 ± 0 61 ± 19 NA
Num. feat. sel. 2 ± 0 2 ± 0 2 ± 0 12 ± 4 NA

numbers of tasks, the computation took 39 days (at least using a näıve extension
of the default Transfer Learning Toolkit implementation).

Breast Cancer Dataset Our second data set pertains to Breast Cancer, con-
taining data from five of the seven data sets used in [22]. It contains 1,171
observations for 22,268 RMA-normalized gene-expression values. We considered
five associated responses (tasks); two were binary—prognosis (“good” or “poor”)
and ER status (“positive” or “negative”)—and three were not—age (in years),
tumor size (in mm), and grade (1, 2, or 3). We binarized the three non-binary
responses into two categories: Response values at least as high as the average,
and values below the average. Finally we scaled the dataset down to n = 100
and m = 5,000 (the 5,000 features with the highest variance), to save computa-
tional resources. Table 4 shows test errors from 5-fold CV on this data set. As
is clear from the table, Partial MIC and BBLasso are the best methods here.
But as was the case with other datasets, BBLasso puts in more features, which
is undesirable in domains (like biology and medicine) where simpler and hence
more interpretable model are sought.

4 Conclusion

We proposed a novel coding scheme, MIC, for feature selection in the presence of
multiple related tasks. MIC is a penalized-likelihood method based on the princi-
ple of Minimum Description Length (MDL). Sharing across tasks happens at two
levels in MIC. Firstly, we (optionally) build a shared covariance matrix for the
tasks (important when the various tasks are nearly identical), and secondly, we
use a shared coding scheme to specify which of the tasks (models) each feature
is added to. Among many attractive properties of the method is its immunity



to overfitting and the absence of any free parameters that might require cross
validation, unlike ℓ1 regularization methods. Results on synthetic and real data
demonstrate that MIC performs better than state-of-the-art Multi-Task Learn-
ing Methods, not only in terms of accuracy but also in terms of simplicity of the
resulting models. MIC works best when there are many features of which only
a few are relevant, a situation that occurs commonly in computational biology
and bioinformatics applications.
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