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students in their areas of strength. This is 
as it should be. Somehow, too, we must 
devise a federal support system to retain 
our best young people in a university o r  
industrial research environment. If the 
marketplace phenomenon of few job op- 
portunities for scientists and engineers is 
allowed to reign unchecked (that is, ap- 
preciably reduce the input of graduate 
students), the nation will lose that 
enormous research effort now contrib-
uted by graduate and postdoctoral stu- 
dents. One solution to this problem, as  I 
mentioned earlier, would be an increase 
in federal formula grants, from which we 
could support these young people. 

A direct effect of the lead institution 
concept that may cause consternation in 
research universities is that departments 
would feel pressure to  bend their efforts 
toward interdisciplinary research, per- 
haps at  the expense of "small science," 
the kind of basic unarticulated research 

that has been the lifeblood of research 
universities. While I clearly d o  not advo- 
cate diminishing such research, the pres- 
sure, on balance, may be a healthy one. 
With some very notable exceptions, the 
traditional departmental structures of 
universities often remain as barriers to  in- 
terdisciplinary research. To  help us over- 
come these barriers-and still preserve 
the departments as  basic academic and 
administrative units-we need to rethink 
ways of subsidizing our research efforts 
in the interdisciplinary, problem-focused 
mode. If the research universities d o  not 
adjust to  society's needs, society's dol- 
lars for high-priority research may simply 
go elsewhere. 

Ideally, the university should be the 
focus for both basic and interdiscipli- 
nary research on long-range issues. Fed- 
eral laboratories, corporations, and 
special university institutes and centers 
would be responsible for the shorter-term 

Phyllotaxis and the Fibonacci Series 

An explanation is offered for the characteristic 

spiral leaf arrangement found in many plants. 

The spiral patterns of leaves, bracts, or 
florets of plants are a familiar mathemati- 
cal curiosity of nature. Anyone who has 
counted the spirals which catch the eye 
on the head of a sunflower, o r  on a pine 
cone, will have discovered that their num- 
ber is generally a term of the series 1, 1 ,2,  
3, 5, 8, 13, 21. . . . This is the famous 
Fibonacci series, each of whose terms is 
the sum of the preceding two. Although 
the study of phyllotaxis (leaf arrange- 
ment) goes back to classical antiquity, the 
attempt to find aplausible mechanism or a 
mathematical explanation for this Fibo- 
nacci phyllotaxis began more recently. It 
is perhaps to  Richards that we owe the 
most lucid treatment of the subject. In 
particular, his paper on the "Geometry of 
phyllotaxis" (I) seems to offer a key to 
the problem. However, it falls short of an 
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explanation: a suggestive diagram and 
several pregnant sentences culminate in 
the assertion that Fibonacci phyllotaxis 
must inevitably occur, given certain plau- 
sible assumptions. It is clear that even 
Richards' authority has not convinced 
later investigators, for the problem has 
continued to be regarded as ilnsolved. In 
response to  this, Adler (2) recently pro- 
posed a somewhat elaborate mathemati- 
cal theory. I show here that such com- 
plexities are unnecessary, and that a 
simple geometric argument, in the spirit 
of Richards' paper, suffices to  explain the 
phenomenon. 

A proviso is necessary, however, since 
this argument only applies when the 
mechanism which positions new leaves 
meets a certain condition: loosely speak- 
ing, the influence of existing leaves in de- 
termining the position of a new leaf must 
be short-range. Experimental evidence 
suggests that this is so (in some plants at 

approaches closer to practical applica- 
tion. 

It will not speak well of the scientific 
community if we must be dragged into the 
global age kicking and screaming, with a 
debilitating case of future shock. If we 
can protect and strengthen basic re-
search-and you will recall I made partic- 
ular note of the health of our universities 
and the support of young investigators- 
if we can encourage more problem-on- 
cnted research and better articulation be- 
tween research sectors, then, I believe, 
we can d o  better than muddle through my 
so-called global age. In my optimism I 
think we are bending in this direction 
now, but my great hope is that these ten- 
dencies will accelerate-for our sake and 
for the sake of future generations. 
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least), but it is clearly important to know 
what happens otherwise. Here, simple 
geometrical reasoning does not suffice, 
and I have resorted to a computer model. 
I find that Fibonacci phyllotaxis persists 
under a wide range of conditions; an ob- 
servation of some mathematical interest, 
whatever its botanical pertinence. 

The Phenomena 

Two types of phyllotaxis predorninate 
in the plant world. One is the decussate 
pattern, where a pair of leaves springs 
from opposite sides of the stem at  each 
level, and successive pairs are at  right an- 
gles. The other, which is my concern 
here, is the spiral pattern, where there is a 
single leaf a t  each level of the stem, and 
successive leaves make a roughly con- 
stant angle, viewed along the plant axis. 
This spiral, which follows the leaves in 
the sequence in which they are created by 
the growing apex, is called the genetic 
spiral. Near to  the apex, or in a bud, the 
leaves are  often closely packed together, 
and the genetic spiral may be discerned as 
the shallowest descending spiral. In this 
situation, each leaf will generally be 
pressed against two leaves further down 
the stem, these being called its contacts. 
In looking at  the arrangement of leaves, 
the eye will tend to follow the sequence of 
contacts from leaf to  leaf, and so to trace 
out a spiral, of a steeper pitch than the 
genetic spiral, called aparastichy (Fig. 1). 
There are two contacts to  each leaf, and 
therefore two sets of parastichies, wind- 
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ing in opposite senses. If one counts the 
number of distinct parastichies in each 
set, it is generally the case that these num- 
bers form two consecutive terms in the 
Fibonacci series (3).Thus, in a pine cone, 
one might find five parastichies in one di- 
rection and eight in the other; in sunflow- 
er heads the numbers may be far higher, 
for example, 89 and 144. 

This observation may be expressed in 
another way. If we number the leaves in 
their genetic sequence, beginning a t  the 
apex (with the most recently formed 
leaf), then the contacts of a given leaf 
will be rn and n further on in the se-
quence, rn and n being the same Fibo- 
nacci terms we encounter in counting 
parastichies. The reason for this is that a 
parastichy passing through a given leaf 
is, by definition, the same as  that through 
the appropriate contact. So, if we follow 
leaves in the genetic spiral counting 
parastichies, we return to  the same paras- 
tichy after n leaves (or rn ,  in the other 
set). 

Not all plants have contacts, in the 
sense of closely adpressed leaves. In 
ferns, for example, leaf primordia near 
the apex are small regions widely sepa- 
rated from each other. Even here, 
though, we find something analogous to 
Fibonacci contacts; if we look at  the near- 
est leaves, measuring between leaf-base 
centers, then these are rn and n away in 
the genetic sequence, rn and n being a 
Fibonacci pair. For  example, in D ~ y o p -  
teri.~dilatata rn andn are commonly 5 and 
8, respectively. The analogy between 
nearest neighbors and contacts may be 
questioned. In plants with contacts, the 
leaves may be seen in cross section as 
rhomboid or  crescent-shaped regions, of- 
ten extending much further circum-
ferentially than radially (Fig. 1). A con-
tact therefore need not be a nearest neigh- 
bor in this section. Yet, if we trace each 
leaf back to its base-that is, its origin in 
the stem- we often find (4) that the bases 
form regions which more nearly approxi- 
mate a circle (or a rhomboid, since the 
interface between leaves is flattened). 
Thus, contacts may be nearest neighbors 
on the stem surface, although a hori-
zontal plane of section distorts this re- 
lationship. 

Closely related to  Fibonacci paras-
tichies and contacts is the observation 
that the angle between successive leaves 
in the genetic spiral, the divergence 
angle, approximates closely to  the so-
called golden angle, defined by dividing 
the circumference of a circle in golden 
section (the ratio of the larger to the 
smaller sector equals the ratio of the 
whole perimeter to  the larger sector), and 
having a value of about 137.5". It is not 
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3 --5 / 
Fig. 1. An idealized plant apex, sectioned in a 
plane at right angles to the axis. Leaves are 
numbered from the center outward, following 
the genetic spiral. The two contacts of a leaf 
are recognized by their flattened interface. The 
eye follows parastichies such as the two 
marked with heavy arrows. There are three 
right-handed and five left-handed parastichies, 
so this is 3,5 phyllotaxis. 

difficult to  show that, if a plant has con- 
tacts rn and n ,  then the divergence angle 
must lie between certain bounds, con-
taining the golden angle, and that these 
bounds become rapidly narrower as  the 
numbers rn and n increase (5). For ex- 
ample, in a plant with contacts 5 and 8 the 
divergence lies in the range 136.8" t 1.8". 
This fact follows from the properties of a 
regular lattice. 

The Changing Apex 

The central question is, why d o  plants 
show these Fibonacci arrangements of 
leaves? It is not, as D'Arcy Thompson (6) 
believed, an inevitable property of a regu- 
lar leaf arrangement, for it is perfectly 
possible to  construct a lattice with any 
chosen contact numbers rn and n ,  o r  any 
chosen divergence angle from 0" to  180". 
The answer is to be found in the way a 
plant grows. The first true foliage leaves 
of a plant, after its seed leaves, often ini- 
tiate a 180" opposite (distichous) or a de- 
cussate pattern ( 7 ) ,  which eventually 
gives way to a spiral. This spiral goes 
through a sequence of increasing Fibo- 
nacci contacts; at the same time its di- 
ve'rgence converges in an oscillating fash- 
ion toward the golden angle. T o  under- 
stand why these changes occur we must 
look t o  the plant apex. New leaves are 
added in succession in a region close to 
the apical tip; the "anneau initiale" of 
Buvat (8). It is here that the future pat- 
terns are established; a new leaf primor- 
dium appears between its contacts, posi- 
tioned by a mechanism that is little under- 

stood. During the growth of a plant from 
embryo to maturity its apical diameter in- 
creases (9). As a result, the pitch of the 
genetic spiral must decrease, and a new 
leaf come into contact with leaves further 
down the genetic spiral. This loose de- 
scription can be made precise by means 
of aformal representation. 

The Lattice of Leaves 

Let  us represent the leaf-bearing region 
of a plant as  a cylinder with the leaves 
forming a lattice on its surface (Fig. 2). If 
this cylinder is cut along an axial genera- 
tor we have a plane figure, a strip. The 
leaves are depicted as  touching circles. 
The numbering I use is from the apex 
downward; L, being the most recently 
formed leaf primordium (leaf for short). 
Note that the numbering is changed every 
time a leaf is formed. I use Loas the origin 
for coordinates s,y .  The distance along 
the x-axis measures the angular separa- 
tion of leaves. Thus, if C is the width of 
the strip andx is the distance between two 
consecutive leaves, the divergence is 
(x/C)36O0. They  -axis corresponds to  dis- 
tance along the plant axis; in most plants 
the axial separation of leaves is not con- 
stant, but increases approximately expo- 
nentially down the stem. But, by a suit- 
able transformation (for example, loga- 
rithmic) we can make the vertical dis- 
tance between successive leaves a 
constant in the diagram. If the successive 
divergences are also constant, this means 
that the leaves form a regular lattice (the 
vector between L,, and L,, + , is parallel 
andof equal magnitude for alln). 

This diagram is the most convenient 
traditional way of representing the leaf 
pattern (4). I shall use the terminology of 
contacts, these being represented by the 
two circles (leaves) that touch a given 
circle. In a plant without contacts these 
must be interpreted as nearest neighbors. 
I assume that leaf diameters remain con- 
stant, so  that there is afixed contact circlr 
measuring the center-to-center distance 
of a leaf from its contacts as  shown in 
Fig. 3a. I also assume that the lattice 
remains approximately regular. This will 
hold true if changes in the stem circum- 
ference occur slowly. More precisely, the 
lattice can be  treated as regular over 
small distances. This suffices, since the 
ensuing argument only concerns leaves 
that lie close together in the genetic 
sequence. 

Now consider the early growth of a 
seedling. Suppose the first foliage leaves 
form a distichous pattern. This means 
that each leaf lies on the opposite side of 
the stem from the preceding leaf, touch- 
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ing it at two points on either side of the and eventually allow the new leaf Lo to 
vertical axis through its center. As the di- touch L, (Fig. 3c). When this first occui.s 
ameter. of the apex increases the two sides L, can occupy one of two positions, on 
of the preceding leaf L, will draw apart, either side of the summit of L,. iind \,vill 

L -- -P 
- 7,-\. 'K, 

- 1  , \ \r 

( c )  
L 

/ 
/ 

L, (d1 
A v 

Fig 2. An apex (a) is decapitated (b) at the anneau inltiale, and opened up and laid out In n pl,ine 
(c): a stllp of constant width IS made by 't su~tabletransformation. The leabe5 are depi~ted  as 
cilclcs, although they would usually be flattened along common bounddiies 1he contact clrcle 
[heavyell cle in [d)] :s the locus of possible positions for the centel of a contact 

Fig. 3. (a) No leaf can enter the contact circle of Lo. 
'l'he same is true for the contact circles of L, and L,. 
These intersect at L,,,,,,. As the vertical distances be- 
tween leaves decrease, L,,,,, must eventually touch L,,. 
(b) The geometry at the transition. When m and n are 
large. min - g ,  the golden ratio (5).'The coordinates of L,,, L,, and L,,-.are accordingly (r,,, y,,), 
(.Y,,. yn, /g) ,and (x,,t x,,,y,,/g2), respectively. If the contact circle has a radius R ,x,,, = - 0.96ZK, 
y,, = 0.332R. and x,,= 0.791K. (c) An expanding apex is represented as a strip of increasing 
width. Two transitions occur: diqtichy to 1,2, and 1,2 to 2.3 contacts (primed). Contact circles 
have been drawn at two leaves close to these transitions. Note that the lattice has small irregular- 
ities; a more rapid widening of the apex would increase these, eventually disrupting the pattern. 

then initiate a spiral. There is a breaking 
of symmetry here: the spiral may be left- 
or right-handed, a choice which appear\ 
to be random in plant\. When L, touches 
L, nnd L1 the fir\t \tage of Fibonacci 
phyllotnxi\ h,l\ been reached, \ince 1.2 is 
the first distinct pnir of the set ies 

I next mnke the inductive hypothesis 
that we have consecutive Fibonacci con- 
tacts rn and n ,  with n > nnl and L, and L, 
on opposite sides of the y-axis (as ;ire L, 
and L ,  in the initial spiral). As C inci-eas-
cs, the pitch of the \piral must decrease. 
Thi\ may either be taken :is obvious, or be 
deduced directly from the formula ( 5 )  

which \how\ thnt x ,  and s, must increase 
with C ,hence 1.,,and y,, decrea\e. 

Which i \  the next lenf to become a con-
tact of L,? By regularity of the I'ittice we 
can draw contact circles around L, and 
L,, which no lattice point can enter 
(shaded region in Fig. 3a). The inter- 
section of these circles is L,,, - ,,and it 
followi from thi5 that the next lattice 
point to meet the contnct c ~ r c l e  of Locan 
only be L,, ,,.Moreover x,,,- ,, is oppo- 
site in sign to .x,,, since x,,, ,, = s,,,t-.x,, 
and l.xn/ < x,,,l;so L,, ,,,lie\ on the oppo- 
site side of the y-axis from L,,. The next 
cont;ict pair is therefore rr, n t- in. and 
since rn t tr is the next Fibonacci term, 
the inductive hypothe\ls i i  est'iblished 
Thi\ pi ove5 the following 

Suppo5e that the leaves of n plnnt can 
be represented by a lattice of touching cir- 
cle\. Then Fibonacci phyllotaxis will be 
generated from the appropriate initial 
conditions given a gr:idually increasing 
circumference of the anneau initiale (or, 
more gepei-ally, an incre;ibing ratio of cir- 
cumference to  leaf diameter). 1shall refer 
to this as  the contact ciicle nrgtiment 4 
specific exdmple m~iy  help to illu5tr'~te the 
geometry (Fig 3c). 

The mo\t delicate point of the argu- 
ment is the transition from one pair- of 
contacts to the next. Here the leaves L,, 
L ,,,,L,,, and L,, ,.will form the vertices 
of a 120" parallelogram (Fig. 3b). It is 
a property of the Fibonacci series that the 
ratios mln, rll(rn + n )  of consecutive 
terms tend to a limit, g ,  the golden ratio 
(3). From this it follows that the paral- 
lelogram is approximately repeated at 
every transition. This was remarked 
by Richards ( I ) ,  who concluded that 
no greater accuracy of leaf positioning 
was required from one pair of contacts 
to the next, even though the diver-
gence angle converges to  the golden 
angle (10) .  

The stem diameter increases from one 
transition to  the next by a factor of about 
1.6 (11).Thus afoul-fold increase in apical 
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diameter would suffice for a transition 
from the initial 1,2 spiral to a 5,8 spiral. In 
cases where still higher numbers are 
found, like a sunflower head, the apex is 
well known to undergo dramatic size in- 
creases. A sunflower with contacts 
89,144 would require a total 30-fold in- 
crease in apical diameter from embryo to 
capitulum. 

S o  far I have assumed that the foliar 
spiral is regular, locally at  least. Now, the 
Snows (12) showed that afault in alattice 
of touching circles is endlessly propa- 
gated. It might be argued, therefore, that 
an accumulation of inaccuracies, togeth- 
er with effects due to the expanding apex, 
would eventually disrupt the pattern. 
There are two reasons why this need not 
happen. 

First, a smooth and slow increase of 
stem diameter does not of itself accumu- 
late irregularities. It is the rate of expan- 
sion rather than the overall increase in 
apical diameter that matters (13). Thus 
Fig. 3c shows a correct sequence of tran- 
sitions from distichy (180") to 2,3 phyllo- 
taxis in a succession of ten leaves; dou- 
bling the rate of increase of diameter will 
dislocate the pattern. 

Second, there appear to  be mecha-
nisms that correct irregularities, as  was 
shown by the Snows' experiments (12). 
They removed primordia in Lupinus crl-
hu.5 and found that the ensuing distur- 
bance in the leaf arrangement was rapidly 
dampened. This was brought about by a 
change in the size of a leafbase, which 
increased or decreased with the distance 
apart of its contacts. The pattern regu- 
lates because a larger than average di- 
vergence is "filled in" by a larger leaf 
base. 

Of course, not all phyllotactic patterns 
achieve ideal regularity, and in some 
plants disruption of the pattern appears to 
be common (14). This may be due to an 
early rapid increase of the ratio of stem to 
leaf diameter. 

It should also be mentioned that an 
"anomalous" spiral phyllotaxis is some- 
times found. Here the contacts follow a 
series such as  I,  3 , 4 , 7 , l l ,  18, . . . ,analo-
gous to  the Fibonacci series but with a 
different initial pair of terms. In such a 
case there will be a different limiting 
divergence; for example, 99.5" with the 
above series. Such anomalous phyllo-
taxis can be traced back to the initial leaf 
pattern. The transition from distichy to 
1,2 phyllotaxis that I have previously 
described is perhaps the most common, 
but is certainly not the only possible 
sequence of events. Variants, such 
as decussate breaking into a spiral, 
easily account for the anomalous pat- 
terns. 
15 APRIL 1977 

The Positioning of Leaves 

So far I have taken the touching-circle 
model of the leaves of a plant as  a fait 
accompli. T o  see how far this representa- 
tion is justified, we must consider how 
leaves are  positioned at the plant apex. 

There is abundant evidence that the po- 
sition of a newly forming leaf is deter- 
mined by the older leaves immediately 
below it. For  example, before a new leaf 
has appeared, another leaf primordium, 
which would have become its contact o r  
nearest neighbor, can be isolated by a cut 
(15, 16). When the new leaf develops it is 
displaced toward this cut, as  though some 
influence from its contact had been 
blocked by the cut. This suggests some 
kind of spacing mechanism, although its 
nature is unknown. 

Perhaps the most attractive proposal, 
whose consequences I shall explore, is an 
inhibitor mechanism, as  suggested by 
Schoute (17). This assumes that the 
leaves and apical tip of a plant produce an 
inhibitor which prevents new leaves from 
forming in their proximity. I shall assume 
that this inhibitor diffuses o r  is trans- 
ported away from its sources, and that a 
new leaf is formed at the first site to ap- 
pear beneath the growing apex where the 
inhibitor concentration falls below a fixed 
threshold. 

This has the merit of being the simplest 
theory which broadly accounts for the ex- 
perimental observations. The principal ri- 
val to inhibition is Schwenender's con- 
tact pressure theory (18), recently re-
vived by Adler (2), which assumes that a 
leaf is positioned by mechanical pressure 

Fig. 4. 'The threshold is denoted by 0; heavy 
lines are 0 contours and light lines 013 con-
tours. As the apex grows its 013 contour must 
eventually reach the intersection of the two 
013 contours of the leaves L,, and L,,. When 
this happens, as shown here, the inhibitor con- 
centration at the triple intersection falls to 
threshold (assuming additivity). Since the in- 
hibitor concentration is above threshold out- 
side the triangle formed by the 0 contours, it 
follows that the first threshold point must lie 
somewhere within this triangle. When the dis- 
tance between 0 and 013 contours is small (the 
gradient is steep), this triangle is small and Lo 
must therefore lie close to the intersection of 
the Ocontours (or 013 contours). 

from its contacts. This is in many ways an 
unhappy hypothesis. It cannot apply to 
the many plants, including ferns, where 
the leaves are widely separated. And 
even in plants where the leaves are in con- 
tact, mechanical pressure cannot explain 
the initial siting of leaves, since a leaf 
must grow somewhat before it meets its 
neighbors. The appeal of contact pres- 
sure is solely that it leads directly to  the 
geometry of touching circles. However, 
an inhibitor mechanism can be formally 
equivalent to contact pressure, as  was ap- 
preciated by Richards and Schoute. 

For suppose that the contours of inhib- 
itor concentration can be represented by 
circles, and that the concentration gradi- 
ent is steep near the threshold contour. 
Then the first subthreshold region to ap- 
pear during growth will lie close to the 
intersection of the threshold contours of 
the two nearest leaves and the apex (Fig. 
4). This means that the threshold contour, 
drawn around Lo, plays the role of a con- 
tact circle. Thus the contact circle argu- 
ment can be applied, and such an inhib- 
itory mechanism will generate Fibonacci 
phyllotaxis. 

More General Models of Inhibition 

There are various ways in which an in- 
hibitory mechanism may depart from the 
foregoing ideal. An exponential (or non- 
uniform) growth of the stem may distort 
the projection onto the cylinder diagram 
of a contour of inhibitor concentration. 
Or polar transport [as with indole auxins 
(19)] may flatten a contour on the stem 
surface against the direction of flow. 
There is, however, no difficulty in gener- 
alizing the contact circle argument to  a 
large class of contour shapes-in fact, it 
can be applied whenever the threshold 
contour is a convex curve (and symmetric 
about they -axis through its source). Con- 
vexity means that any line segment be- 
tween two points on the curve lies within 
the curve, or equivalently, that the tan- 
gent to  the curve rotates in a fixed sense 
as  we follow the curve (examples are a 
circle and a parabola). This class of curve 
is adequately general. Any contour from 
a point source of inhibitor, with any com- 
bination of linear destruction kinetics, 
diffusion, and polar transport must be 
convex (20). 

The contact circle argument must be 
modified as  follows to deal with the gener- 
al convex curve. Draw the inverted 
threshold contour To around Lo (Fig. 5) 
and suppose that L ,  and L,  lie on To. 
(This is equivalent to saying that L,, lies a t  
the intersection of threshold contours of 
L., and L,,.) Draw the translated contours 



Table 1. Computer simulation of an expanding 
apex. Here A = 1 .O, which means that the in- 
hibitor gradient due to a leaf falls sevenfold (to 
15 percent of its original value) in the distance 
from a contact to L,,. The pitch of the foliar 
spiral is taken to be dl = tan-'(y,/,r,), or the 
angle measured on the plane diagram. 

Pitch of Diver-
Stem Con-foliar genceradius tactsspiral angle 

T, and T, around L,, and L,, respectively; 
these meet at L,+ ,. Now, convexity 
means that if L, + ,, lies outside To, then 
T, cannot meet To, moving in the direc- 
tion of increasing x (to the right in Fig. 5). 
This is because the tangent t,,(x) to 1,,at  a 
given x is rotated away from the tangent 
to To, to(,x), since l',Lis a copy of To dis- 
placed to the right. Thus the two curves 
are carried apart by increasing x ;  so this 
part of To lies within T, and cannot meet 
any other leaf. Similar reasoning shows 
that the left-hand part of T, does not meet 
To if L, + . 

apex, L,,, L,,, and L, + ,,contribute appre- 
ciably to  determining the site of the ncw 
leaf L,,. We require that Lo lie at a mini- 
mum of the inhibitor landscape, at the 
threshold concentration; that is, k,,i 5  the 
first admissible site for a new leaf This 
can be written formally as 

where 

is the total inhibitor concentration at a 
~ o i n t ,  with the sum taken over the four 
pertinent sources of inhibitor, and T, is the 
distance from each. Here N denotes the 
threshold and x ,  y are the usual coordi- 
nates. 

Now, ifrn andn  are large, mirz = g ,  the 
golden ratio (5). The coordinates of L,,, 
L,,, and L,,,, can therefore be written as  
(xm, ynt), (x,, yrn/s)> and (.xi,, -t -x,, Y,,,/K~), 
respectively. If these three leaves lie 
exactly on the contact circle about Lo, 
normalized to have unit radius, the geom- 
etry dictates that x, = --0.962,- 0.332 (Fig. 3b). Choosing 

Fig. 5. It is convenient to draw an invetted 0 
contour round Lo,with L,, and L,, lying on it, 
rather than putting Loat the intersection of the 
H contours belonging to these leaves. Here To  
denotes the (inverted) N contour around Lo ,  
and T,,, T,, those around L,, and L,L,reapective-
ly. Tangenta to Toand T,,are a h o ~ n  at a paltic- 
ularx (dotted line). 

6, until A falls to  about 4. Here the as- 
sumptions become invalid, for other 

x,, leaves, such as  L,-,,, make an appre-lies outside TI,.It follows that 
L,,+ ,, is the next leaf to  meet To, and 

0.791, and y, 

therefore the next contact in the series. 
It is also important to consider the ef- 

fect on the pattern of varying the steep- 
ness of the inhibitor gradient emanating 
from a leaf (or the apex). Unless this gra- 
dient is very steep we have no assurance 
that the new leaf Lo will lie close to  the 
intersection of threshold contours of its 
contacts, as  all the previous analysis has 
required. The most critical situation is the 
transition, where L,, + ,, is about to re- 
place L,, as a contact. If L,,, + ,, lies on the 
"wrong" side of the y-axis-that is, on 
the same side as  L,-then the Fibonacci 
sequence breaks down. The minimum 
steepness necessary to prevent this can 
easily be estimated in a tractable case. 

Suppose the inhibitor spreads isotro- 
pically, following an exponential law, so  
the concentration at distance r from a 
leaf (regarded as  a point source) is 
Kexp(-Ar), where K and A are positive 
constants. Suppose also that contribu- 
tions from several sources can be 
summed. These are reasonable assump- 
tions for an inhibitory gradient due to  dif- 
fusion and linear destruction kinetics 
(21). The distancer is taken to be the (flat) 
distance on the cylinder diagram; this will 
be an acceptable approximation to the 
shortest distance in three dimensions if 
the stem diameter is large enough (or 
equivalently, m and n are large enough). 

At the transition, suppose that only the 

unit radius also specifies the ratio BiK, 
and Eqs. 2 and 3 yield t ) /K  - 4.977 (on 
eliminating r,, the distance from the apex 
to L,,). Wow look for solutions of Eqs. 2 to 
4 close to  the contact circle con-
formation. Put 

x,, = 0.391 + q 
and calculate E and q whcn y,,, takes the 
preceding value, 0.332. Ignoring higher 
powers of E and q ,and using the approxi- 
mations exp(At) = (1 + AE) and so on. 
Eqs. 2 to  4 become 

Or, even more approximately, whcn A is 
large 

The5e last equations give support lo the 
intuition that the leaf L, must shift toward 
L,, (and L, away from Lo) to balance cir- 
cumferential components of inhibition at  
L,,. The important point is that L,,,,,, does 
not stray across the y-axis through L,,asA 
decreases; in fact, it is displaced in the 
opposite direction. 7 his remains truc, us- 
ing the more exact values from Eqs. 5 and 

(, ciable inhibitor contribution 10 per- 
cent) a t  Lo.  This value ofA corresponds to 
a gradient which falls about 50- to 100- 
foldfromL,, orL,, toLo.  

Experimental evidence suggests that 
leaves other than the contacts d o  not in- 
fluence the position qfLo. Thus, in Ward- 
law's experiments oil fern apices (16) ,the 
isolation of a primordium only influenced 
the position of the two subsequent leaves 
for which the isolated primordium would 
have been a contact. But a small effect on 
other leaves can not be ruled out, and it is 
reasonable to  ask what happens when in- 
hibitor gradients are shallow. Analytical 
treatment becomes difficult when many 
sources have to be taken into account. 
Accordingly, I have simulated a growing 
apex on a computer (22). 

As before, I assume a regular lattice, 
and require that Eqs. 2 to  4 hold. But now 
the sum I = I;Kexp(-Ar,) is taken over 
all leaves L i ,i 2 1. The stem is represent- 
ed by a solid cylinder, while the distancer 
is now the shortest distance in space (this 
being perhaps a more realistic measure 
when the stem diameter is small). Begin- 
ning with 1,2 contacts, the stem diameter 
is increased in small steps, with the pa- 
rameters of the lattice being adjusted at 
each step so as  to  satisfy Eqs. 2 to 4 (23). 

I find that Fibonacci phyllotaxis is 
generated for all values o fA tested, even 
when the gradient falls twofold or  less 
from a contact to Lo. The correct se-
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quence of contacts occurs, with a con- 
sequent convergence to golden angle di- 
vergence (24) ,while the pitch of the foliar 
spiral decreases smoothly (Table 1). This 
conclusion appears to  be robust; for ex- 
ample, a different choice of diffusion 
function, such as  Kexp(-Ar)/r, yields 
very similar results. 

Summary 

The principal conclusion is that Fibo- 
nacci ~hyl lo tax is  follows as  a mathemati- - .  
cal necessity from the combination of an 
expanding apex and a suitable spacing 
mechanism for positioning new leaves. I 
have considered an inhibitory spacing 
mechanism at some length, as  it is a plau- 
sible candidate. However, the same treat- 
ment would apply equally well to  deple- 
tion of, o r  competition for, a compound 
by developing leaves, and could no doubt 
accommodate other ingredients. 

The mathematical principles involved 
are clear when it is assumed that only two 
leaves (the contacts) position a new leaf. 
There is some experimental evidence for 
this assumption. Nonetheless, it is not a 
precondition for Fibonacci phyllotaxis, 
since a computer model shows that this 
pattern is generated even when many 
leaves contribute to inhibition at  a given 
point. Indeed, the Fibonacci pattern 
seems t o  be a robust and stable mathe- 
matical phenomenon, a finding which 
goes some way to explaining its wide- 
spread occurrence throughout the plant 
kingdom. 
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