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We introduce a broadened framework to study aspects of coevolution based on the 
NK class of statistical models of rugged fitness landscapes. In these models the 
fitness contribution of each of N genes in a genotype depends epistatically on K 
other genes. Increasing epistatic interactions increases the rugged multipeaked 
character of the fitness landscape. Coevolution is thought of, at the lowest level, as 
a coupling of landscapes such that adaptive moves by one player deform the 
landscapes of its immediate partners. In these models we are able to tune the 
ruggedness of landscapes, how richly intercoupled any two landscapes are, and how 
many other players interact with each player. All these properties profoundly alter 
the character of the coevolutionary dynamics. In particular, these parameters govern 
how readily coevolving ecosystems achieve Nash equilibria, how stable to perturba- 
tions such equilibria are, and the sustained mean fitness of coevolving partners. In 
turn, this raises the possibility that an evolutionary rnetadynamics due to natural 
selection may sculpt landscapes and their couplings to achieve coevolutionary 
systems able to coadapt well. The results suggest that sustained fitness is optimized 
when landscape ruggedness relative to couplings between landscapes is tuned such 
that Nash equilibria just tenuously form across the ecosystem. In this poised state, 
coevolutionary avalanches appear to propagate on all length scales in a power law 
distribution. Such avalanches may be related to the distribution of small and large 
extinction events in the record. 

1. Introduction 

Our aim in this article is to describe a new class of  models with which to investigate 
some of the problems of  coevolution. The class of  models is related to the game 
theoretic models introduced by Maynard Smith & Price (1973) and Maynard Smith 
(1982). These authors, and many since them, have been concerned primarily (but 
not exclusively, see Rosenzweig et al., 1987) with intraspecies coevolution, and the 
conditions under which coevolving systems attain evolutionary stable strategies, 
ESS. Our focus is largely on a general class of models for interspecific coevolution, 
and the conditions to attain Nash equilibria in such systems. 

We consider coevolution occurring among species each of  which is itself adapting 
on a rugged multipeaked fitness landscape. But the fitness of each genotype, via 
the phenotype, of  each species is affected by the genotypes via the phenotypes of  
the species with which it is coupled in the ecosystem. Adaptive moves by one 
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coevolutionary partner, therefore, may change the fitness and the fitness landscapes 
of the coevolutionary partners. Anecdotally, development of a sticky tongue by the 
frog alters the fitness of the fly, and what changes it must now make to increase its 
fitness; given the frog's sticky tongue, the fly should now develop slippery feet. In 
this framework, adaptive moves by any partner may deform the fitness landscapes 
of other partners. 

To investigate this, we reintroduce the NK family of rugged multipeaked fitness 
landscapes (Kauffman 1989a, b, 1990; Kauffman et al., 1989; Kauffman & Wein- 
berger 1989; Weinberger, 1990). In this model, N corresponds to the number of 
genes in a genotype, or traits in an organism, while K corresponds to the number 
of other genes, or traits, which have a bearing on the fitness contribution of each 
gene or trait. K, therefore, corresponds to the richness of epistatic linkages in the 
system. Tuning K from low to high (increasing epistatic linkages) increases the 
ruggedness of fitness landscapes by increasing the number of fitness peaks, it 
increases the steepness of the sides of fitness peaks, and decreases the typical heights 
of fitness peaks. The decrease reflects the conflicting constraints which arise when 
epistatic linkages increase. Thus, the NK model provides a tunably rugged family 
of model fitness landscapes. To study coevolution we couple the fitness landscapes 
of different interacting species. To do so we suppose that genes or traits in each 
species make fitness contributions which depend upon K other genes or traits within 
that species itself, but also upon C traits in each of the other species with which 
the species interacts. Therefore, adaptive moves by one species may deform the 
landscapes of its partners. Altering C changes how dramatically adaptive moves by 
each species deform the landscapes of its partners. The other major parameters in 
the model are the total number of species which interact, S, and the number of 
these, Si, which may be restricted with which any species, i, interacts. One form of 
the model we investigate ignores population dynamics and focuses upon the evol- 
ution of genotypes. A second form includes population dynamics using the familiar 
Lotka-Voiterra logistic equation allowing the evolution of competition or mutualism 
among the coevolving species. 

The framework we consider permits us to study how the ruggedness of fitness 
landscapes, the richness of coupling among fitness landscapes, the number of species, 
and the structure of the ecosystem, affect the coevolutionary process. To our 
knowledge, this is the first model which has allowed these questions to be investigated 
more or less systematically. We find a number of interesting and apparently novel 
features of such a process. Among these, the sustained fitness of the coevolutionary 
partners depends upon all the parameters. Therefore, we are driven to consider the 
possibility of selective metadynamics in evolution in which coevolutionary partners 
change not only their genotypes in an effort to optimize fitness on a given deforming 
fitness landscape, but may also change the statistical character of their fitness 
landscapes by changing its ruggedness, or may change the richness of couplings to 
other landscapes, and change the number of other partners with whom they coevolve 
so as to optimize sustained fitness. Rather remarkably, in distributed ecosystems 
where each partner interacts with only a few other species, this metadynamics 
appears to lead to a critical "poised" state in which the entire system is tenuously 
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"'frozen" at Nash equilibria. Here each species is maximally fit given the genotypes 
of  its partners, and is characterized by an unchanging, locally optimal genotype 
and stable population density. But at this poised state avalanches of  coevolutionary 
change unleashed by minor changes in the physical environment, or other exogenous 
noise, propagate through the system on all length scales, with a power law distribu- 
tion between sizes of  avalanches and numbers of  avalanches at each size. Such 
avalanches typically include fluctuations to lower fitness, hence they are likely to 
be correlated with increased probabilities of extinction events. Thus, the size distribu- 
tion of  avalanches can be used to try to predict distribution of  sizes of  extinction 
events in the record. The observed distribution tends to support a picture of  
ecosystems which are slightly more rigidly "f rozen"  than the critical poised state. 

In section 2 we reintroduce the N K  model and extend it to model coevoiving 
species. In section 3 we describe the dynamics of coevolving pairs of species as a 
function of  K and C. In section 4 we extend the results to distributed ecosystems 
where each species interacts with only a few of  the total. In section 5 we extend 
the results to include population dynamics via a version of the Lotka-Volterra 
logistic equation. 

2. Coupled NK Fitness Landscapes 

The N K  family of rugged fitness landscapes were introduced (Kauffman 1989a, b, 
1990; Kauffman et al., 1989; Kauffman & Weinberger, 1989) to describe genotype 
fitness landscapes engendered by arbitrarily complex epistatic couplings. Consider 
an organism with N genes, each with A alleles. For simplicity, consider that each 
has only two alleles, 1 and 0. Alternatively, consider an organism with N traits, 
present or absent. The fitness contribution of  each gene or trait depends upon itself 
and epistatically on K other traits. Thus, each trait makes a fitness contribution 
which depends upon the particular combination, one among 2 t K +~) of the presence 
or absence of  the K + 1 traits which bear upon its fitness. The N K  model is intended 
to capture the effects of  such epistatic coupling. It is similar to physicists' spin-glass 
models, which assume random energy interactions among spins in a physical material 
and study the generic properties of  the complex energy surfaces in such coupled 
spin systems (Derrida, 1981; Binder & Young, 1986). The NK model is like a 
spin-glass model in assuming that the epistatic interactions among genes are so 
complex that their effects on fitness can best be captured by assigning those effects 
at random. Thus, the N K  family models the statistical structure of  such fitness 
landscapes by assigning at random to each such combination of " inputs"  to the ith 
trait a fitness contribution between 0.0 and 1.0. Then for each organism, the fitness 
contribution of  each of  its N traits in the context of  itself and the K which bear 
upon it are added together. Thereafter, the fitness is normalized through division 
by N. Figure 1 shows a simple organism with three traits, or genes, each of which 
makes a fitness contribution depending upon itself and the other two. The model 
assigns a fitness to each of the eight genotypes possible. 

A central idea is that of  a fitness landscape. Figure 1 shows all 23= 8 genotypes 
arranged on a Boolean cube, such that each genotype is a 1-mutant neighbor of  the 



470 S .  A .  K A U F F M A N  A N D  S .  J O H N S E N  

three others which are accessible by mutating a single gene, or trait, to the opposite 
allele, or state. Thus, (000) is a 1-mutant neighbor of  (001), (010), and (100). 
Arrangement of  the eight genotypes onto the Boolean cube supplies a genotype 
space, in which each genotype is next to its 1-mutant neighbors. For an N gene, 
two allele system, the corresponding space is an N-dimensional hypercube. The 
N K  model yields a fitness for each of  the eight genotypes, shown in Fig. 1. These 
fitnesses can be thought of  as a heights in a fitness landscapes of  the kind initially 
introduced by Wright (1932). 

. L "  ! 2 3 w! W;Z WS W " ~/~laq 

0 0 0  0"6 0"3 0"5 0 ' 4 7  
O 0  I 0"1 0"5 0"9 0 ' 5 0  
0 I 0 0-4  O'B 0-1 0 , 4 3  
0 ! I 0 -3  0"5 0"8 0"53 
I 0 0 0-9  0"9 0-7  0 ' 8 3  
I 0 I 0"7 0"2 0"3 0 ' 4 0  
I I 0  0 '6  0-7  0-6 0 ' 6 3  
I I I 0-7 0 ' 9  0-5 0 "70  

(0 .63 )  , -~  - - ~ ,  
I10  / " 

~" ~ t (0'701 I 

/ ( o . 8 3 ~ ~  It~ ; 

I . , /  I ~ , o J l  

(0"471 
0 0 !  

10"50) 

FIG. t. (a) Assignment of K = 2 epistatic "'inputs" to each site. (b) Assignment of fitness values to 
each of the three genes with random values for each of the eight combinations of K + 1 alleles bearing 
on genes 1, 2, and 3. These fitness values then assign a fitness to each of the 22 = 8 possible genotypes 
as the mean value of the fitness contributions of the three genes, as given in eqn (I). (c) Fitness landscape 
on the three-dimensional Boolean cube corresponding to the fitness values of the eight genotypes in (b). 
Note that more than one local optimum exists. 

The simplest picture of  an adaptive process in a fixed fitness landscape envisions 
beginning at a genotype and "moving" to a 1-mutant neighbor only if the second 
genotype is fitter than the first (Maynard Smith, 1970). Then an adaptive walk starts 
at a genotype and climbs uphill until a genotype which is fitter than all 1-mutant 
neighbors, a local optimum, is encountered. Figure 1 shows two such local optima. 
Natural statistical features of  landscapes include the number of  local optima, the 
average number of  steps to local optima, the number of  local optima accessible 
from a random initial genotype, the number of  genotypes which can climb to the 
global, or any other optima, the number of  directions "uphill"  from any genotype 
and how that number dwindles to zero as adaptive walks climb to optima. Other 
questions ask how these properties change if the adaptive walk can pass via 2-mutant 
or J-mutant  variants, or if it may pass through equally fit or less fit neighbors. Still 
other questions concern how a population will flow across such a landscape under 
the drives of  mutation, selection, and recombination. Here, as a function of  the 
ruggedness of  the landscape, complex population flows occur, with the population 
able to climb to local peaks and hover in their vicinity at low mutation rates, but 
melting from those peaks and spreading ever wider reaches of  the genotype space 
as mutation rates increase (Schuster, 1987; Eigen et  al., 1988; Fontana & Schuster, 
1987; Kauffman, 1989a, 1990). 
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All these properties depend upon the statistical structure of  the underlying fitness 
landscape. The NK model was introduced because it provides a family of landscapes 
which range from single peaked and highly correlated to fully random and uncorre- 
lated as K increases from 0 to its maximum, N -  1. For K = 0, each gene or each 
trait makes an independent  fitness contribution. The model corresponds to an N 
locus two allele additive haploid genetic model. Each gene has a favored allele, by 
chance 1 or 0. Thus, there is an optimal genotype in which each gene has mutated 
to its optimal allele. For example, without loss of  generality, the "1" allele of each 
gene might contribute more to fitness than the "0"  allele. Then for N = 6, the 
(111111) genotype is obviously the optimal genotype. Further, any other genotype 
can "cl imb" to this optimum by mutating the less fit to the more fit allele of  each 
gene. Hence, there are no optima other than the single and global optimum. On 
each step uphill, the number  of  ways uphill decreases by 1. For example, in passing 
from the least fit genotype, (000000)-(100000), single gene changes from 0-1, hence 
the number  of  directions uphill has decreased by 1, from N in this case, to N - 1. 
As adaptive walks approach the peak, (111111), the number of ways uphill decrease 
by 1 at each step, hence they decrease slowly. Since a randomly chosen genotype 
is half  "1"  alleles and half  "0"  alleles, and, without loss of  generality we have 
assumed the optimal genotype to be (111111), on average, the number of steps to 
the global optimum scales as N/2. Further, the fitness of 1-mutant neighbors is 
nearly the same, since the greatest difference a single gene might make scales as 
1/N, which is small for large N, and reduces towards 0 as the number of genes, N 
increases. Thus, K = 0 corresponds to a highly correlated landscape about a single 
global peak, a "Fuj iyama" landscape. Furthermore, the gradient of  the fitness slope 
to the peak is shallow: fitness increases by 1/N on each step uphill. Finally, it is 
easy to show from order statistics that in this model the global optimum has a fitness 
of  2/3. 

The maximum value of  K is N - 1. For K = N -  1 the landscape is fully uncorre- 
lated. That is, the fitness of  1-mutant neighbors are random with respect to one 
another. This can be seen in Fig. 1. Each of  the three genes depends upon itself 
and the other two genes. Thus, changing any gene's allele, say from 0 to 1, changes 
the combination of  allele states affecting each of  the three genes to a new combina- 
tion. For each combination of  alleles of  the K + 1 genes which affect each gene, 
that gene makes a different, randomly assigned fitness contribution. Since the fitness 
of  the new 1-mutant genotype is the mean of  N new random variables, it is fully 
random with respect to the original genotype. Thus, for K = N - 1, the fitness values 
of  genotypes are fully random. The fitness of  each genotype carries no information 
about  the fitness of  its 1-mutant neighbors. The landscape is completely uncorrelated. 

The K = N -  1 fully random fitness landscape is highly multipeaked and rugged. 
It corresponds to the Derrida's (1981) random energy spin-glass model and was 
analyzed by Kauffman & Levin (1987) and Macken & Perelson (1989). Such 
landscapes have a very large number of  local peaks, on the order of  2 N / ( N +  1). 
Because there are many local optima, adaptive walks to optima are very short. 
Indeed, expected walk lengths equal InN. Thus, a system with N = ten genes would 
typically harbor walks of  two or three steps to optima, and a vastly larger system 
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with N = 10 000 genes would have walks only of  about nine steps. Unlike "smooth"  
K = 0 landscapes where, at each step, the number of  ways uphill decreases by 1, 
on K = N -  1 random landscapes at each step uphill the number of  ways uphill 
drops by half. A direct implication of  the multipeaked character of  such fitness 
landscapes and the rapid dwindling of  remaining directions uphill as walks progress, 
is that if an initial walk branches along more than one route uphill at each step, as 
a phylogeny might, then the resulting phylogenetic tree will be "bushy".  Initial low 
fit genotypes might branch in many directions, but the rate of  branching must 
dwindle as fitness increases until high fit genotypes barely manage to find single 
directions further uphill. In short, something like radiation and stasis is built into 
the structure of  fixed rugged fitness landscapes. Further, due to the rugged multi- 
peaked character of  the landscape, any initial genotype can climb to only a small 
fraction of  the local optima, and only a small fraction can climb to the global 
optimum. An adapting population tends to become trapped in local regions of  the 
multipeaked fitness landscape. It follows that selection has a hard time searching 
across very rugged fitness landscapes. A further critical feature of the N K  model 
is that for K = N - 1 ,  the optima are lower than for K - 0 .  Indeed, a kind of 
complexity catastrophe occurs: as N, hence K, increases, the fitness of typical local 
optima dwindle towards 0.5, the mean fitness in the space. This decrease reflects 
the conflicting constraints among the K genes impinging upon each gene, which 
makes it increasingly difficult to find allele states of  the set of  genes which yields 
high overall fitness. 

These results show that as K, which is a measure of  the richness of epistatic 
interaction among the genes or traits, increases, fitness landscapes change from 
smooth and single peaked to random, and multipeaked. Thus, as K changes, a 
family of  increasingly rugged multipeaked landscapes is encountered. In general, 
as K increases for fixed N, the number of  local optima increases, the sides of fitness 
peaks become steeper, and the heights of typical local optima decrease. As we shall 
see, these features appear  fundamental to coevolutionary behavior when N K  land- 
scapes are coupled. 

The N K  model is a very general model of  a family of  tunably rugged, correlated 
fitness landscapes. It, together with rather related spin-glass models, are the first 
explicit examples where such a family has been examined. It is, at this point, entirely 
unclear how many such families of rugged correlated landscapes may exist. However, 
the N K  family seems likely to be an important member of such a set of families. 
Furthermore, the potential biological utility of  the N K  has recently been enhanced 
by showing that it is able to account for the statistical features of  protein evolution 
seen in maturation of  the immune response (Kauffman & Weinberger, 1989). Because 
the N K  model is both the first, and appears a plausible, model of  rugged fitness 
landscapes which may apply in biological evolution, we extend it here to study 
coevolutionary processes. 

Consider an ecosystem with S species. For simplicity imagine that each species 
is homogeneous,  that is, that all organisms in the species are identical, hence the 
species currently occupies a particular combination of  its N traits. Then an N K  
landscape can represent the fitness landscape of  one "homogeneous"  species. This 
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assumption corresponds to the limit described by Gillespie (1983, 1984), in which 
mutations arise infrequently in an adapting population compared to the fitness 
differences between initial and mutant forms. Under these conditions, the population 
encounters advantageous mutants on a slow time scale and moves as a whole on a 
short time scale to the new fitter variant. Thus, under these limiting cases, the 
population can be approximated as homogeneous. With a higher mutation rate, or 
under  other conditions, a species is not homogeneous. It is possible to extend the 
model to allow the population representing one species to be a cloud distributed 
over its landscape in which frequency and density dependent  coevolution within 
the species occurs. 

In a coevolutionary system we need to represent the fact that both the fitness and 
the fitness landscape of  each species is a function of the other species. Thus, in 
general, it is necessary to couple the rugged fitness landscapes for each species, such 
that an adaptive move by one species "projects"  onto the fitness landscapes of other 
species and alters those fitness landscapes more or less profoundly. Over time, each 
species jockeys uphill on its own landscape, and thereby deforms those of it 
ecological neighbors. Any such move by one may increase or decrease the fitness 
of  each neighbor on its own landscape, and alter the uphill walks accessible to that 
neighbor. 

In the context of  the N K  model the natural way to couple landscapes is to assume 
that each trait in species 1 depends epistatically on K other traits internally, and 
on C traits in species 2. More generally, in an ecosystem with S species, each trait 
in species 1 will depend upon K traits internally and on C traits in each of the Si 
among the S species with which it interacts. It is also natural to assume symmetry, 
if species 1 is in the niche of species 2, then 2 is in the niche of species 1. We stress 
that this assumption does not imply a symmetry of  effect. We assume that species 
1 and 2 must each be in the other's niche, but species 1 may help species 2 while 
species 2 may harm species 1. 

Consider the "f rog"  as species 1, and the "fly" as species 2. The effects of 
the frog's N genes upon the frog's fitness is given by its NK landscape. Similarly, 
the effects of  the fly's N genes upon its fitness is given by its own NK land- 
scape. The C traits in species 1 which affect each trait in species 2 can be thought 
of  as C arrows drawn from each such trait in species 1 to the corresponding trait 
in species 2. Conversely, the C traits in species 2 which impinge upon each trait in 
species 1 can be thought of  as C arrows drawn from each such trait in species 2 to 
the corresponding trait in species 1. To represent the effect of  the C traits from 
species 1 which are coupled to each trait in species 2, we expand the fitness tables 
defining the landscape of  species 2 to incorporate the added C traits which couple 
to each trait in species 2. Hence, for each of the N traits in species 2, the model 
will assign a random fitness between 0.0 and 1.0 for each combination of  the K 
traits internal to species 2 together with all combinations, present or absent, of  the 
C traits in species 1. In the expanded tables, each trait in species 2 makes a randomly 
assigned fitness contribution for each of the 2 CK÷l÷c) combinations of states of the 
K + 1 internal traits in species 2 and the C external traits in species 1. In short 
landscapes are coupled by expanding the random fitness table for each trait in 
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species 2 such that it " looks"  at its K internal epistatic inputs and also " looks" at 
the C external epistatic inputs from species 1. Given this, then the fitness landscape 
o f  species 2 is a function of  the current location of  species 1 on species ls own 
fitness landscape. Therefore,  as species 1 adapts and changes its own traits or 
genotype, those alterations will change both the fitness of  species 2, and also deform 
2s fitness landscape. In turn, each trait in species 1 is coupled to C traits in species 
2, and the fitness values for each of  the N traits in species 1 must be expanded 
similarly. This couples the two landscapes. Each is in the niche of  the other. Moves 
by each tend to deform the fitness and fitness landscape of  the other. As we see 
below, the resulting coevolutionary process depends critically upon K and C. K 
governs how multipeaked and rugged landscapes are, C governs how much one 
partner's landscape buckles when another partner makes an adaptive move. If K 
and C are properly adjusted relative to one another,  coevolutionary " improvement"  
is easy; if not, landscapes buckle faster than coevolving entities can respond adap- 
tively. All partners do poorly. 

In a system of  S species, the interactions can be represented by a web of  such 
projections. In so doing, we have at our disposal at least: (1) choice of  the number 
and identity of the traits, C, which couple from one species to each single trait in 
another  species. (2) The number  and identity of  other species among the S which 
project onto each species. (3) Finally, we have at our  disposal the number of  species, 
S, in the entire ecosystem. 

In section 3 we shall assume that each species in an S species system is coupled 
directly to all other species. This richest coupling is undoubtedly unrealistic. A vast 
literature studies the hierarchical structure of  food webs (e.g. Pimm, 1982). In section 
4 we consider "structural" ecosystems where each species interacts with only a few 
of  the other species. 

We also assume a second "worst  case" condition, namely that in an S species 
ecosystem there is no similarity between the species, hence the effects of species 1 
on 2 and 3 on 2 are randomly assigned. In reality, rabbits and hares probably look 
much the same to a fox. Similarity of  species presumably can be thought of as 
reducing the number of  effectively different species with which each species interacts. 
Finally, we also consider a naive case from an ecological standpoint,  namely that 
each coadapting partner interacts at each moment with all other partners. In section 
5 we are more realistic and require that each species interacts with the others in the 
ecosystem in pair-wise combinations, using plausible population dynamics. 

3. Landscape Ruggedness and Couplings Between Landscapes Tune Coevolution 

The game theoretic models which have been explored to study coevolution have 
not as yet been built to take account of  the statistical ruggedness of  each of  the 
coevolving partner's landscapes, the richness of coupling of  those landscapes, and 
the implications of  those features on the entire coevolutionry process. But surely 
these are major  aspects of  the problem. The NK model affords tunably rugged 
landscapes whose richness of  coupling can also be tuned, hence we can study the 
influences o f  these factors on coevolution. 
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Simulations of coevolving systems were carried out under the assumption that 
each species "acts" in turn, in the context of the current state of the other species. 
In its turn, each species tries a random mutation and "moves"  as a whole to that 
mutant variant if the variant is fitter. If the mutant variant is not fitter, the species 
does not move. Thus, if the species moves, this at least transiently increases the 
fitness of  the species which has just moved, but may increase or decrease the fitness 
of  its coevolving partners. In addition to this " r andom"  dynamics, we also examine 
two alternative cases. In the "fitter" dynamics, each species in turn examines all its 
mutant variants and chooses at random one of  the fitter variants if any exist. In the 
"greedy"  dynamics, each species in turn chooses the fittest mutant variant. 

3.1. NASH E Q U I L I B R I A  

In general, such a coevolutionary process admits two behaviors. Either the partners 
keep dancing, or the coupled system attains a steady-state at which the local optimum 
of  each partner is consistent with the local optimum of  all the other partners via 
the " C "  couplings. Such a steady-state is the analogue of  a Nash equilibrium in 
the current context. We use the word "analogue"  for the following reason. A true 
Nash equilibrium assumes that each agent can, at each moment,  chose any one of  
its possible "actions".  In the present context, this corresponds to each species, in 
a single moment,  altering its current genotype to any of the 2 N possible genotypes. 
In assuming that each species is able, at each moment,  to mutate a single "gene"  
or trait, we are constraining the range of  alternative genotypes, or actions, locally 
accessible to the species. Thus, the steady-states we will find are similarly constrained. 
In the remainder of  this article we use the term "Nash"  equilibria with the under- 
standing that such equilibria are with respect to the mutant search range. 

A second caution is required. We consider Nash equilibria, as described. The 
concept of  an evolutionary stable strategy, an ESS, is a further refinement of  the 
concept of  a Nash equilibrium, in which the condition of non-invadability by a 
mutant at an initial low frequency in the population is analyzed. In the simplified 
dynamics used here where the whole populat ion moves in an "instant"  to a fitter 
variant, we do not analyze invadability. Studies with fuller population dynamics, 
section 5, which do include analysis of  invadability, confirm the simpler dynamics. 

Simulations were carried out between pairs of  coevolving species, or "agents",  
each a single organism on an independent NK landscape. In addition, simulations 
were carded out for larger numbers of  species, S. The first major result is that Nash 
equilibria are actually encountered. It is not obvious that this should occur, for each 
species has 2 N genotypes among which it is evolving. An S species system has the 
product  of  these genotypes in its joint "strategy space". 

Figure 2 shows eight species, each with N = 24, K = 17, and C = 1, coevolving 
over 2500 generations. Here, then, each site within one species is epistatically affected 
by 17 other sites within that species and one site in each of  the eight other species. 
Over eight generations, each species in turn tries a random mutation and moves to 
that new genotype only if it is fitter than the current genotype in the context of  the 
current genotypes of  the remaining seven species. At each generation, the fitness of  
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FIG. 2. Coevolution among eight "'species" each governed by an N K  landscape. N = 24, K = 13. Each 
of the N "'traits" in each species is affected by C = l "'trait" in each of the seven other species. System 
reaches a steady-state about generation 1600. Note, mean fitness in the absence of selection is 0-5. See text. 

all species are recalculated in the context of  the genotype of each and their couplings. 
As can be seen, for the first few hundred generations, the mean fitness of  the whole 
set of  species increases, rapidly at first, then more slowly. Increasingly long intervals 
with no change occur, reflecting the fact that as fitness increases, the waiting time 
to find fitter variants increases for each partner. Sudden bursts of  change by many 
species, however, are instigated by occasional changes by a single partner. By about 
1600 generations, however, the entire system stops changing, and in fact remains 
constant forever thereafter. A Nash equilibrium has been found such that each 
species is locally fitter than all 1-mutant variants, granted that the others do not 
change. 

3.2. WAITING TIME TO ENCOUNTER NAStt EQUILIBRIA 

The waiting time to encounter  Nash equilibria depends upon N, K, and C. For 
K > C, Nash equilibria are encountered rapidly, for K < C the waiting time to find 
Nash equilibria becomes very long. In order to examine how N, K, and C bear on 
the waiting time to encounter  a Nash equilibrium, simulations were carried out 
between two species. For each value of N, K, and C tried, 100 coevolving pairs 
were released. Over generations, a successively larger fraction will have encountered 
Nash equilibria and hence stopped evolving. Figure 3 (a) and (b) shows the results, 
plotting the fraction "still walking", against the generations elapsed, for C = 1, Fig. 
3(a) and for C = 8, Fig. 3(b). 

The main point to note is that as K increases relative to C the waiting time to 
hit a Nash equilibrium decreases. Thus, as the ruggedness of  landscapes increases, 
by K increasing, the expected waiting time to find Nash are decreasing. Presumably 
this reflects the increased number of  local optima in NK landscapes as K increases 
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FIG.  3. ( a )  Fraction of 100 coevolving pairs of species which have not yet encountered a " N a s h "  
equilibrium, hence still walking as a function of generations elapsed. Curves correspond to different 
values of K. N = 24,  C = 1 in all cases. (b) Same as (a) except C = 8. 

for fixed N. Similar studies as N increases, data not shown, for fixed K and C, 
show that the waiting time to hit Nash equilibria increases, presumably because the 
density of  local optima decreases as N increases. In short, for a pair of  species 
which are coevolving, K = C is a crude dividing line. When K is greater than C, 
Nash equilibria are found rapidly. When K is less than C, Nash equilibria are still 
found, but the mean waiting time becomes very long. 

3.3. C O E V O L U T I O N  W H E N  T W O  I N T E R A C T I N G  S P E C I E S  H A V E  D I F F E R E N T  K V A L U E S  

It is of considerable interest to study the outcome of coevolution in which partners 
are on landscapes of  different ruggedness. Figure 4 reports the results of simulations 
in which pairs of  species have K values of  2, 4, 8, 12, and 16, for three values of 
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C, 1, 8, and 20. N = 24 in all cases. These three values of  C were chosen to lie 
below, in the middle, and above the range of  K values. For each set of  parameter 
values, 300 pairs of  coevolving species was released, and evolved for 250 generations. 
By that time, Nash equilibrium may or may not had been encountered. In the former 
case, the fitness of  each partner was noted. In the latter case, the average fitness of  
each partner over the prior 85 generations was tabulated. The left panels in Fig. 4 
report the mean fitness of  each partner at the Nash equilibria encountered,  and the 
number which reached such Nash equilibria. The middle panels of  Fig. 4 show the 
mean fitness of  each partner as it continues to coevolve, over the last 85 generations, 
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FIG. 4. Results of  coevolution a m o n g  300 pairs o f  species for 250 generat ions for C = 1, C = 8, and 
C = 20 and K values of  2, 4, 8, 12, 16. N = 24 in all cases. Left panels,  "Yes" ,  correspond to cases where 
"Nash '"  equil ibrium were encountered.  Each "cell" has three numbers .  The upper  number  is the man  
fitness of  the "Row"  player. The middle number  is the fitness of  the " 'Column" player. The lowest 
number  is the fraction of  the 200 pairs of  players which encountered a " N a s h "  equilibrium. The middle 
panels,  " N o " ,  show cases where no " N a s h "  equil ibrium was encountered in 250 generations.  The three 
numbers  in each "'cell" are the same except that the fitness values correspond to mean  fitness over the 
last 85 generations.  At each generat ion a random mutant  was tried; the species moved to that variant 
only if it was fitter. Right panels "al l"  show average fitness over generations whether  or not Nash  
equilibria were encountered.  
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and the number of pairs still coevolving. The right panels show the mean fitness of 
all partners whether or not Nash equilibria were attained. 

Figure 4 shows a number of  interesting features: 
(1) For all values of K, as C increases, the fraction of coevolving pairs which 

encounter Nash equilibria in 250 generations decreases. Conversely, for any 
fixed value of  C, as K increases, the fraction of pairs encountering Nash 
equilibria increases. This re-exhibits the phenomena of Fig. 3. High K leads 
to more rugged landscapes and Nash equilibria are encountered more rapidly. 

(2) When C is higher than 1, i.e. C =8,  C =20, the fitness at Nash equilibria is 
higher than the corresponding fitness when the partners are still oscillating. 

(3) As C increases, the fitness of both coevoiving partners during the oscillatory 
phase before encountering Nash equilibria decreases for all pairs of coevolving 
K values. Thus, fitnesses during the preNash oscillatory period for C = 20 
are substantially lower than for C = 8 and still lower than for C = 1. Presum- 
ably this reflects the fact that, for high values of C, a single move by one 
partner sharply lowers the expected fitness of the remaining partner. 

(4) When C is high, C = 20, note that the high K "players" have higher mean 
fitness during the oscillatory period before hitting Nash equilibria than do 
low K "players". More strikingly, in playing against a second player with a 
fixed K value, the first player would increase mean fitness during the oscilla- 
tory period by increasing its own value of K. That is, a K4  player does better 
against a K2 player than would a K2 player, while a K8 player does even 
better, etc. 

(5) Equally remarkably, when C is high, C = 20, a low K player achieves higher 
mean fitness during the preNash oscillatory period if it plays against a second 
species of high K. That is, a K2 player has higher fitness against a K4 player 
than against a K2 player. A K2 player fares even better against a K 16 player. 
Thus, when C is high, increasing the K value of one partner helps both 
coevolving partners. 

(6) This tendency is reversed when C is low, C = 1. Here during the oscillatory 
period, low K players fare better than high K players. 

(7) At the Nash equilibria encountered, the fitnesses of  low K players is clearly 
higher than that of  high K players for each value of C, and indeed seem 
roughly independent of  C. 

(8) Finally, when C is high, overall average fitness is highest when K is high. 
When C is low, C = 1, overall average fitness is highest when K is low. Thus, 
fitness in coevolving systems would be enhanced were K able to adjust to 
match C, or more broadly, if K and C were themselves evolvable. 

Similar studies were carried out using the "fitter" and the "greedy" dynamics 
described above. The main results are the same. A major difference arises in the 
greedy dynamics. Here, for any genotype, there is generically a unique best fit 
1-mutant variant in the context of the other species. Thus, if each species "plays" 
in a deterministic order, each changes to a unique next genotype, and the set of 
eoevolving species can enter a recurrent cycle in the total space of  S genotypes. We 
find that when K < C, such periodic attractors arise rather frequently. 
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The analysis above is based on mutating a single site, gene, or trait, at a time in 
each coevolving species. We have also examined the sustained fitness of  coevolving 
species as a function of  the number of  genes or traits which can mutate at each 
moment.  In general, for any value of  N, C, and K, an optimal mutation rate exists. 
Figure 5(a) shows the results of  coevolution as the mutation rate, or more accurately, 
the number of  traits randomly mutated in each species, increases to 2, 4, 8, 16, and 
24, for coevolving pairs of  species on increasingly rugged landscapes, K = 2, 4, 8, 
12, 16. In all cases each of  the N = 24 sites in each species is coupled to C = 1 site 
in the other species. As the number of  genes mutated simultaneously increases, the 
number of  local optima on a fixed landscape dwindle, hence the probability that 
the coevoiving pair reaches a local Nash equilibrium falls. Thus, the fitness seen in 
the coevolving pair reflects fitness during the preNash period. Values are averages 
of the last 85 steps in 250 generations. Figure 5(a) shows that for all values of K, 
as the number of  genes mutated increases, the maintained fitness reaches a maximum 
for two or four simultaneous mutations, and falls thereafter. The decrease in 
maintained fitness is greatest for small K values, hence smoother landscapes, and 
less marked for large K values. Figure 5(b) and (c) shows similar results except 
that the coupling among the coevolving players, C, is increased to eight and 20. In 
general, but not uniformly, as C increases the optimal mutation rate decreases. 
These results suggest that there may typically be a low optimal mutation rate to 
maintain fitness in coevolutionary processes. 

This discussion has ignored the costs of  mutational search to a population in 
terms of  genetic load. As mutational search distance increases from genotypes of  
above average fitness on correlated landscapes, typically a smaller fraction of the 
mutant genotypes equal or exceed the initial genotype. Hence, load becomes greater 
as mutation rate increases. This would be expected to further reduce the optimal 
mutation rate in coevolution. 

The results we have seen make a number of  intriguing suggestions. All point 
to the possibility that a coevolving system of  species may collectively tune the 
parameters governing its own coevolution. 

First, there may well be selective processes which match " K "  to " C "  in order 
to optimize the coevolutionary capacities of  the coevolving partners. K "should"  
increase when it is low relative to C, and decrease when it is high relative to C. As 
shown in Fig. 4 for the most biologically plausible case in which each species tries 
random mutations and moves to a variant if it is fitter, if C is high relative to K, 
any player increases its fitness by increasing its own K value. When C is high, 
increasing K has two beneficial effects. First, Nash equilibria are encountered more 
rapidly and are fitter than the prior oscillatory period. Second, fitness during that 
prior oscillatory period is higher. Thus, it is advantageous to any player to increase 
K in a high C environment. Perhaps equally remarkably, in the biologically reason- 
able case of  random mutations, Fig. 4(a)-(c) such a move by one species also helps 
the second species. Each has higher preNash fitness and finds Nash equilibria sooner. 
Conversely, suppose K is high relative to C. Then, as is clear from Fig. 4(a)-(c)  
and Fig. 3, Nash equilibria are encountered very rapidly. Thus, the fitness in the 
preNash oscillatory period is of less importance, and the fitness of  Nash equilibria 
are more imigortant. But local optima at Nash equilibria are higher for low K players 
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FIG. 5. (a) Effects o f  increasing the mutation rate on mean fitness maintained in coevolving species. 
Both coevolving species randomly mutate 1, 2, 4, 8, 16, or 24 of  the N =24  "'genes" at each moment. 
K = 2, 4, 8, 12, 16. C = 1. Figure plots average fitness over last third of  250 coevolutionary steps against 
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or four mutant search ranges. For all values of  K, maintained fitness falls for greater mutation rates. 
(b) As in (a), except C = 8. (c) As in (a), except C = 20. 



482 S. A .  K A U F F M A N  A N D  S. J O H N S E N  

than high K players. Thus, if K is too high with respect to C, it should be 
advantageous to decrease K. In short, at this group level of  coevolving species, it 
seems clear that there are reasonable selective advantages to a species as a whole 
to " tune"  K to match C. At that match, given a fixed C, Nash equilibria will be 
encountered rapidly, and be highly fit, optimizing mean fitness during any preNash  
periods, minimizing the mean duration of those periods, and maximizing the fitness 
of  the Nash opt ima attained. 

The analysis above is based on advantage to the species as a group in increasing 
K. In order to avoid "group  selection" we seek selective conditions acting on 
individual members  of  a single species which might increase K in members  of  that 
species, hence in the coupled ecosystem. Within the f ramework of the N K  model,  
a change in " K "  would naturally be envisioned as a mutation which altered the 
epistatic coupling between traits, or genes, such that a trait or gene now depended 
on one more,  or one fewer epistatic " inputs" .  That  is, we must let " K "  itself evolve. 
In this framework,  the natural way to express the consequence of  such a mutation 
which increases K is to expand the fitness table for that trait such that it now "looks 
at"  the new trait as well as the K it initially " looked at". That new epistatic 
connection, in the context of  the current genotype in which the new connection is 
formed, might increase or decrease the fitness of  the current genotype. That is, the 
new epistatic link may itself alter the fitness of  the current genotype for better or 
worse. Thus, we can envision three ways in which selection on an individual level 
may allow an increased K value at one genetic locus to spread throughout  a 
populat ion:  (1) that new epistatic link, when it forms, causes the genotype to be 
fitter and is selected, hence it spreads. (2) The new epistatic link is "near  neutral"  
and spreads through the populat ion by random drift. (3) The new link has not only 
a direct effect on the fitness of  the current genotype, but also on the inclusive fitness 
of  the individual and its progeny due to the increased fitness of  those progeny in the 
coevolutionary process itself, due to increased rapidity of  finding Nash equilibria, 
and higher fitness during the preNash oscillatory period. Presumably,  organisms 
can evolve to alter not only the structure of  their fitness landscapes,  here by altering 
K, but can alter how badly the landscape is deformed when other partners make 
adaptive moves. In the current context, evolution can presumably alter C. 

These considerations suggest the possibility of  a coevolutionary dynamic which 
optimizes K and C relative to one another  in an ecosystem, such that partners 
maintain high mean fitness. 

Next we consider the coevolution of  the number  of  species, S, in the coupled 
ecosystem. A clear process should tend to limit the number  of  species. Consider  
coupled landscapes with fixed K and C couplings. Let the number  of  species 
increase, under  the assumption that each species is " C "  coupled to all other species. 
For pairs of  species, K = C is a rough dividing line separating cases where Nash 
equilibria are encountered rapidly vs. slowly. In multispecies systems with S species, 
it appears  that when K is greater than S x C, the coevolving partners all encounter  
a Nash equilibrium rapidly. When K is less than S x C, the coevolving partners do 
not encounter  a Nash equilibrium for a long time. We stress that the exact relation 
between mean waiting time to encounter  Nash equilibrium, and the K, S, and C 
parameters  are unknown. K = S x C is a rough guide. 
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Numerical results are shown in Fig. 6(a)-(c) for an increasing number of coupled 
species. In all cases N = 2 4 ,  K = 1 0 ,  and C = 2 .  In Fig. 6(a) S = 4  species are 
coevolving. Thus, each species senses C = 2 inputs to each of  its genes from each 
of  the three other species. Each species in turn randomly mutates and tries to find 
a fitter variant. Over 2000 generations, mean fitness increases and the four species 
find a Nash equilibrium. In Fig. 6(b) and (c) the number of species increases to 
eight, and then to 16. Data to 2000 generations are shown for the eight and 16 
species cases. No Nash was found for 8000 generations in these cases. 

Note the following features in Fig. 6(a)-(c):  (1) as the number of  species, S, 
increases, the waiting time to encounter a Nash increases. (2) As S increases, the 
mean fitness of  the coevolving partners decreases. (3) As S increases, the fluctuations 
in fitness of  the coevolving partners increases dramatically. Thus, for the four species 
case, mean fitness increases rapidly, and achieves fairly high Nash equilibria. For 
the 16 species case, the entire system fluctuates about a mean fitness slightly above 
average, 0.5, with dramatic excursions below 0.4. 

These results show that as the number of  mutually coupled species in the system 
increases, the mean fitness falls and fluctuations to very low fitness increase. There- 
fore, if we may assume that fluctuations to low fitness are associated with an increased 
chance of extinction of the unlucky species, these results suggest that if S is too 
high, the coupled ecosystem will fluctuate dramatically and lead to the extinction 
and loss of  species, thereby lowering S. In turn, as S is lowered, the ecosystem 
behaves less chaotically, mean fitness of  all partners improves both during the 
preNash period and because Nash are encountered more rapidly. The remaining 
system coevolves "'well" despite the fact that landscapes are coupled and deform 
as each actor moves. 

In short, with clear hesitations, and heralded caveats, this framework begins to 
suggest the possibility that the coevolutionary parameters governing the ruggedness 
of landscapes, couplings among landscapes and number of coevolving partners 
might themselves coevolve without group selection, to continuously recreate well- 
formed ecosystems which are successfully able to coadapt. This is no mean feat, for 
as Fig. 6(c) makes clear, coevolution among coupled species can lead to chaotic 
fluctuations with no accumulation of  improvement. If  one wishes a "'Red Queen",  
here is one to reckon with. 

4. Structured Ecosystems and Self Organized Criticality: 
Adaptation to the Edge of Chaos 

Real ecosystems are not totally connected. Typically each species interacts with 
a subset of  the total species, hence the system has some extended web structure. In 
this section we extend our results to such ecosystems. The supposition that a 
coevolutionary system can control the ruggedness of  coupled landscapes, and its 
own connectivity by selection itself, and therefore its dynamics, has interesting 
implications for extended ecosystems. It might be the case that coevolving ecosystems 
tend toward a state of  "self  organized criticality" in which parts of  the ecosystem 
are " f rozen"  at Nash equilibria for long periods such that the species in the frozen 
component  do not change, while other species continue to undergo coevolutionary 
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FIG. 6. (a) Coevolut ion among  four species. N = 24, C = 2, K = 10. (b) As in (a), but  eight species 

are coevolving. (c) As in (a), but  16 species are coevolving. Note that as the number  o f  species increases, 
the mean  fitness decreases and  the variance in fitness increases. 
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changes. Cascades, or avalanches of  changes initiated at local points in the ecosystem 
web may propagate to various extents throughout  the ecosystem. Such avalanches 
may trigger speciation and extinction events. Furthermore, the endogenous dynamics 
of  the coevolving system under  natural selection optimizing sustained fitness for 
each coevolving partner, may tend toward this characteristic critical poised state in 
which such avalanches can propagate on a variety of size scales with a power law 
distribution between sizes of  avalanches and their frequencies. 

The term, "self  organized criticality", was recently coined by physicist Bak (1988), 
to refer to a quite generic pattern of  self organization. Bak asks us to consider a 
tabletop onto which sand is added at a uniform rate. As the sand piles up on the 
table, it begins to slide off the edges of  the table. Eventually, the system reaches a 
steady-state at which the mean rate of  adding sand equals the mean rate at which 
sand falls over the edges. At this stage the slopes from the peak to the edges of  the 
table are near the rest angle for sand. Bak asks the following question: If one adds 
a single grain of  sand to the pile at a random location and starts an avalanche, what 
will the distribution of avalanche sizes be? Bak finds a characteristic power law 
distribution relating the frequencies and sizes of  avalanches, with many tiny 
avalanches and a few large avalanches. He argues that this distribution is characteris- 
tic of a wide range of phenomena,  including distribution of earthquake sizes, and 
other examples. The argument requires that the system under investigation attain 
and maintain a kind of  "poised"  state which is able to propagate per turbat ions--  
avalanches--on all possible length or size scales. 

There are at least three ideas, derived from Bak's theory, which seem interesting 
in the coevolutionary context. Cascades of  perturbations, constituted by "packets" 
of coevolutionary change, with a characteristic relation between size scale and 
frequency, may propagate through an ecosystem. First, this possibility requires that 
parts of  the ecosystem can be "at  rest" while other parts change. Second, the 
propagating changes are likely to be associated with fluctuations to low fitness which 
may engender both extinction and speciation events. Extinction events might be 
expected because of  low fitness itself. Speciation events would be expected because, 
at low fitness, the number of  directions of  improvement is increased. If  the probability 
of  branching speciation is proportional to the number of  directions of  improved 
fitness, then low fitness episodes should trigger speciation events. Thus, the propaga- 
tion of  avalanches through the system would be linked to speciation and extinction 
phenomena.  Third, coevolutionary dynamics of  linked speciation, extinction, and 
alterations in coupling among the species in the ecosystem may achieve ecosystems 
which are "poised"  such that avalanches can propagate on a characteristic variety 
of  size scales. We shall see that this poised property is likely to be associated with 
the existence of  nearly melted "frozen" component  in ecosystems. 

4.1.  F L U C T U A T I N G  F R O Z E N  C O M P O N E N T S :  N A S H  E Q U I L I B R I A  

E X T E N D E D  T O  L A T T I C E  E C O S Y S T E M S  

A first hint that such ideas may apply to ecosystems arises in extending the 
coevolving NK model to structured ecosystems in which each species interacts with 
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only a few of  the other species: parts of  the system may be fixed at Nash equilibria 
while other parts continue to coevolve. That is, some species can attain an equilibrium 
and stop coevolving, hence remain "at  rest", while adjacent species in the ecosystem 
continue to change either transiently or persistently. 

To begin to investigate the behavior of  structured ecosystems, we carried out 
simulations on "square"  lattice ecosystems in which each interior species interacts 
with its four neighbors. Comer  and edge species interact with two and three neighbors 
respectively. Model ecosystems have varied from 3 x 3 = 9  species to 10x 10= 100 
species. In addition to square ecosystem, which have comers and edges, we have 
investigated toroidal ecosystems in which the "square"  is folded into a cylinder by 
joining left and right edge species, and then bent into a torus by joining top and 
bottom species. We have also investigated randomly connected ecosystems with 
similar general results. 

Figure 7 shows 12 successive times in the temporal coevolution of  a 10x 10 
ecosys[em. In this study N = 24, K -- 10, C = 1. At each time moment,  one of  the 
100 specie~ "plays"  and "greedily" chooses the fit, test 1-mutant variant if any is 
fitter than its current genotype. Each species "'plays ' in turn, and thus 100 "plays" 
constitutes an ecosystem generation. After each ecosystem generation, hereafter 
"generat ion",  a n y  species may have changed its genotype, or remained the same. 
If the species ~ changed, we color it "white",  if it remains unchanged, we color it 
"black": The simulation was run over 200 ecosystem generations. The panels in Fig. 
7 represent moments which are four ecosystem generations apart in time, from a 
period in the middle of  the 200 generations. The first question to ask is" Can "'frozen" 
regions of  "black" species which are unchanging in their genotypes, and other 
regions of  "white"  species which are changing their genotypes coexist in the 
ecosystem? The salient features to note are these: 

(1) A large fraction of  the species are frozen and unchanging over single ecosystem 
generations. 

(2) Some regions remain frozen over very many ecosystem generat ions In Fig. 
7, species in the upper left and lower left comer  remain frozen over about 
48 ecosystem generations. 

(3) One or more "whi te"  unfrozen regions may exist. 
(4) Over time, the location and size of  the frozen "black" region waxes and 

wanes. That is, a fluctuating frozen component can exist and extend through 
some or much of  the ecosystem. 

(5) In the simulation carded out here, ultimately, the "f rozen" region encom- 
passes the entire ecosystem. That is, the ecosystem comes to rest at a combina- 
tion of  genotypes which are local Nash equilibria for all 100 species. In the 
absence of exogenous perturbations, the system will remain in this frozen 
state thereafter. 

(6) In many simulations, particularly using the "greedy"  algorithm, the coevotving 
ecosystem encounters a limit cycle. Typically in these cases, a fraction of  the 
entire ecosystem remains permanently "frozen",  while the remainder oscillate 
through a recurrent set of  genotypes. 

These results show that one region of  an ecosystem can be " f rozen"  while other 
regions continue to coevolve. One region persists in a Nash equilibrium something 
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FIG. 7. Twelve successive time moments four ecosystem generations apart in a 10 x 10 = 100 species 
ecosystem where each species plays with its immediate neighbors. Thus, corner species coevolve with 
two immediate partners, edge species with 3, and interior species with 4. N = 24, K = 10, C = 1. As time 
progresses, frozen regions, black, where species are not changing genotype at that generation, emerge, 
expand and contract over the distributed ecosystem. If all species stop changing, the entire ecosystem 
is frozen, each species at a local Nash equilibrium. 

like an evolutionary stable state, while adjacent regions in the same ecosystem persist 
in "Red Queen" antics. 

The existence of frozen components in an ecosystem may bear on, indeed may 
be fundamental to evolutionary stasis for some species despite general changes in 
ecosystems altering other species. Some organisms may be maximally adapted to a 
fixed coevolutionary environment in such a fixed component, even though other 
species continue to undergo coevolutionary change. 

4.2. A COEVOLUTIONARY ADAPTIVE PROCESS LEADING TOWARD A SELF 

O R G A N I Z E D  CRITICAL STATE WITH A PERCOLATING FROZEN COMPONENT 

The results in the previous sections concerning unstructured ecosystems suggested 
the possibility that a coevolutionary dynamics might tune the parameters of the 
coevolving species such that the species coevolved "well". Here we discuss pre- 
liminary results suggesting that these ideas may extend to structured ecosystems. 
Species may "selfishly" tune their K values such that the coupled system as whole 
coadapts well. At the optimal state, a frozen component just begins to percolate 
across and covers the ecosystem "tenuously". 

Figure 8(a) and (b) shows the results of simulation of 5 × 5 square ecosystems in 
which the average fitness of the corner species, each coupled to two other species, 
the "edge" species, each coupled to three other species, and the "interior" species, 
each coupled to four other sepcies, are accumulated. In the simulations, K is varied 
from 0-22. For each value of K, 50 ecosystems were analyzed over 200 ecosystem 
generations each. Figure 8(a) corresponds to the "random" dynamics where a 
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FIG. 8. (a) Mean sustained fitness in 5 x 5 ecosystems as K varies from 0-22, N = 24, C = 1 in all 
cases. "'Corner" species are connected to two others, top curve, edge species are connected to three 
others, middle curve, interior species are connected to four others, bottom curve. Note sustained fitness 
increases then decreases as K increases. "Random" dynamics were used, such that each species tried a 
random I-mutant variant and "moved" there if that mutant were fitter. (b) As in (a), except the "'fitter" 
dynamics were used. Each species picks at random one of its fitter variants if any exists, at each species 
generation. 

r a n d o m  muta t i on  is tried by each species. Figure 8(b) cor responds  to the "fi t ter" 
dynamics ,  where one of  the fitter var iants  is chosen at r a n d o m  by each species at 
each generation." These figures reveal the fo l lowing features:  

(1) For  all interspecies connect ivi t ies ,  two for the corner  species,  three for the 

edge species, and  four  for the middle  species, there is an optimum value of 
K about  K = 8 - 1 0 .  For lower or higher values of  K, the average fitness 

declines.  
(2) M e a n  fitness increases, if  connect iv i ty  to other  species decreases from 4-3 -2 .  
If  there is an  opt imal  va lue  of  K for sus ta ined  fitness in coevolving systems, then 

it might  be the case that  selective effects might  " p u l l "  K values of  coevolving 
par tners  towards this op t imum.  This in tu i t ion  is conf i rmed in Fig. 9. Here we 
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FIG. 9. Selection force towards a Kop t value of K = 8-10. Two "experimental" species located adjacent 
to the central species in the 5 x 5 ecosystem were constructed with a different K value than the remainder 
of the ecosystem. In all cases deviations of the experimental pair, "'dot", compared to the rest of the 
ecosystem, small square, toward Kom increased the sustained fitness of the experimental pair compared 
to the rest of the ecosystem. In contrast, deviation away from K,,ps decreased the fitness of the experimental 
pair compared to the rest of the ecosystem. 

investigate the effect on the fitness of  two "test" species, located adjacent to the 
center of  the ecosystem, due to increasing or decreasing " K "  values, compared to 
the rest of  the ecosystem. To sample fairly the rest of the ecosystem, we monitored 
the fitness of  two "control"  species, also adjacent to the center of the square 
ecosystem. Figure 9 shows that, in all cases, presence of  two "test" species with an 
altered K value had little effect on the fitness of  the two control species. More 
critically, if the rest of  the ecosystem had suboptimal K values, namely 0 or 2, or 
above optimal K values, namely 14 or 23, then deviations of  the K values of the 
test species to or towards the K optimal values of K = 8 - 10 increased thefitness o f  
the test species. Conversely, if the ecosystem as a whole is at the K optimal values 
of  K = 8 -  10, then deviations of  the K values of  the test species away From the 
optimal values decreases the fitness of  the test species. In short, there is a selective 
force toward the K optimal value of 8-10 which can act on single species, presumably 
via individual members of  that species, and pull each toward the jointly optimal K 
value. 

These results support and extend those discussed in the previous section with 
respect to completely connected ecosystems. There we found evidence that it was 
advantageous for a single species to increase or decrease K towards an optimal 
value relative to C. The results in Fig. 9, are a powerful indication that a kind of  
selective metadynamics may very well tune K, the ruggedness of  landscapes among 
coevolving species, towards a joint optimum where all partners coevolve well. 

4.3. C O E V O L U T I O N  TO T H E  E D G E  O F  C H A O S :  O P T I M I Z A T I O N  O F  S U S T A I N E D  F I T N E S S  

A T  Kop, T Y I E L D S  E C O S Y S T E M S  W I T H  J U S T  P E R C O L A T I N G  F R O Z E N  C O M P O N E N T S  

Might optimization of  the capacity to coevolve, by optimizing K relative to C, 
actually selectively attain a posed self-organized critical state? The answer appears 
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to be "'yes" in the current model. Figure 9 shows that selection would be expected 
to pull coevolving partners to jointly exhibit a near optimal K = 8 - 10 value. Figure 
10 shows that as K increases the rapidity with which the ecosystem becomes "'frozen" 
at a Nash equilibrium increases as well. Thus, for K = 8 or less, no freezing of the 
entire ecosystem occurs in any of  the ecosystems over 200 generations. For K -- 10 
entire ecosystems freeze at Nash equilibra gradually over the 200 generations, while 
for K = 14 or 22 ecosystems freeze rapidly. Thus, the K optimal value for sustained 
fitness, K = 8 - 10, occurs just at t~at value where freezing begins visibly to occur. 
Otherwise stated, model ecosystems optimize coevolutionary fitness when frozen 
components are tenuously extending across the ecosystem, hence when the system 
is "at the edge of  chaos". By this phrase we mean that for values of  K larger than 
Kopt, the ecosystem "freezes" into a "solid" state with all partners at Nash equilibria. 
For values of  K smaller than Kopt, the ecosystem takes a very long time to achieve 
a Nash equilibria. The fitnesses of  the species fluctuate chaotically during the long 
preNash period. Hence, the system is chaotic, and can be thought of  as being in a 
kind of  "gas" phase. Just at the interface between the solid and gas phase is a kind 
of  "l iquid" region, at the edge of  chaos (Langton, 1990). Our results suggest that 
selection, in this model, achieves systems poised at the edge of  chaos. 

4.4. C O E V O L U T I O N A R Y  A V A L A N C H E S  I N  P O I S E D  E C O S Y S T E M S :  

A P O W E R  L A W  D I S T R I B U T I O N  

The "edge of chaos" also corresponds to a poised self organized critical state 
with respect to coevolutionary avalanches. As seen above, as K decreases from 
above Kop,, the frozen component  of  all the species at a Nash equilibrium "melt". 
We investigate next the implications for coevolutionary avalanches, and find that 

N=24 C=I S=25 

50 
' / ( = 0 , 2 , 4 , 8  

d 

i i i i I h i i i 

200 
G e n e r o t  i o n  

FIG. I0. Fraction of 5 x 5 ecosystems which have not yet become frozen in an overall Nash equilibrium 
plotted against ecosystem generation. Note that for K = 8 or less, none of the ecosystems attained a 
frozen Nash equilibrium in the time available. For K = 10 or larger, some or most systems freeze at 
Nash equilibria, and do so more rapidly as K increases. 
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at the optimized state for sustained fitness, avalanches propagate  on all length scales 
in a power law distribution. 

Alterations at one site in an ecosystem can often be expected to cause neighboring 
species to undergo coadaptive changes. Thus, changes at one point may propagate  
the various extents throughout  the ecosystem. Such avalanches of  changes are the 
analogues to Bak's sand pile avalanches. The propagat ion of such changes through 
an ecosystem are clearly of  interest. In particular, during such changes, the affected 
species are likely to fall transiently to lower fitness. I f  lowered fitness is associated 
with an increased probabil i ty of  extinction, then such avalanches might be associated 
with the propagat ion of  extinction events. 

To begin to investigate such avalanches, we modified the ecosystem model to 
allow each species to be affected not only by its neighbors in the ecosystem, but 
also by its external "wor ld" .  The "external  wor ld"  of  each species consists in a 
binary vector length PC. Each site in the species is coupled to W sites in its world. 
The fitness table of  each site in the species is augmented to " look at" the K internal 
sites, the C sites in each of  the species impinging upon that species, and the W 
sites in that species' world. Thus, alteration in the world of  one species deforms the 
fitness landscape that species is coevolving upon. Typically, such alterations lower 
the fitness of  the species sufficiently so that its current genotype is less fit than one 
or more of  the 1-mutant neighbor genotypes. I f  so, the species changes, and may 
then unleash an avalanche of  coevolutionary change which propagates through the 
ecosystem. 

The simplest avalanches of  changes to visualize are those which are perturbations 
from the " f rozen"  state in which all species are at local Nash equilibria. Simulations 
using the "fit ter" move dynamics found the frozen state, then the "wor ld"  of  a 
random member  of  the ecosystem was changed. At the end of each ecosystem 
generation, each species may have remained the same, or altered its genotype. After 
the onset of  such a change, coevolutionary changes continue until the system returns 
to a (perhaps new) frozen state with all species at local Nash equilibria. At that 
point,  the "ava lanche"  has died out. 

We used two measures of  the "size" of  such an avalanche. (1) The first is total 
number  of  species which are caused to alter their genotypes. This measures the total 
number  of  species in the avalanche which have changed genotype at least once. (2) 
An alternative measure sums the number  of  species which have changed at each 
ecosystem generation from the start of  the avalanche until the avalanche stops. 
Thus,  the second measure includes both the number  of  species which are affected, 
and the number  of  ecosystem generations in which each is affected. We denote this 
measure as (species x time). 

Figure l l ( a ) - ( c )  shows the resulting histograms of  avalanche sizes for the 5 x 5 
ecosystems discussed above. These figures plot the logarithm of  the numbers of  
avalanches at each size vs. the logarithm of  the sizes of  avalanches in the species x 
t ime measure  of  avalanche size. The number  of  avalanches measured are 228 for 
K = 10, 374 for K = 14, and 308 for K = 20. Figure 12(a)-(c) shows similar histo- 
grams of  avalanche sizes for 10 x 10 = 100 species square ecosystems, with N = 24, 
and values of  K of  12, 14, and 18. The number  of  avalanches measured are 119 for 
K = 12 402 for K = 14 and 150 for K = 18. 
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FIG. 11. (a) Avalanche size distr ibution in 5 x 5 ecosystems.  Figure plots the logari thm of  the number  
o f  avalanches,  vs. the logarithm of  the size o f  the avalanche (species x t ime) ,  for N = 24, C = 1, K = 10 
ecosystems,  228 avalanches are plotted. (b) As in (a), except K = 14.374 avalanches are shown. (c) As 
in (a), except K =20,  308 avalanches  are shown. Note (a)-(c) ,  as K approaches  Kop t value o f  K = 10, 
avalanche size dis[ribution appears  to approach a power law. 
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We would expect a relation between the value of  K and the sizes of  avalanches. 
Intuitively, the " f rozen"  state is readily attained and "sol id" when K is sufficiently 
high, but the frozen state becomes more tenuous as K decreases. When the frozen 
state is very solid, avalanches are not likely to propagate far. When the frozen state 
is nearly melted, any perturbation is likely to propagate further. This is entirely in 
accord with the fact that the mean avalanche size increases and so does the variance 
as K decreases in both the 5 x 5 and 10x 10 ecosystems. It also appears, that as K 
decreases, the distribution of  avalanche sizes approaches a power law. Thus, for 
the 5 x 5  ecosystems where K =8-10  corresponds to the value which optimizes 
sustained fitness, and for which ecosystems just begin to freeze, the log-log plot is 
approaching a straight line. Hence, the distribution appears to be a power law. For 
larger values of K, the log-log plot is convex, hence it is not a power law. The same 
features recur in the 10 x 10 ecosystems Fig. 12(a)-(c) shows that the log-log plot 
for K = 18 and K = 14 are clearly convex, hence not a power law, and may be 
approaching a power law linear relationship by K = 12. 

Similar results, data not shown, arise with respect to the "species" measure of 
avalanche sizes. 

In sum, the following features are of interest. 
(1) There are more small than large avalanches. 
(2) As K decreases, the mean and median size of  avalanches increases, and the 

variance increases. 
(3) The distribution of  avalanche sizes is clearly not a power law when K is 

sufficiently large, but appear  to be approaching a power law on both measures 
of  avalanche size as K decreases towards a "critical" value at which waiting 
times to encounter  Nash equilibria "diverge".  

(4) The critical value of  K corresponds to the Kop t value which optimizes 
sustained fitness in the coevolving ecosystem. Thus, selective forces are 
expected to pull the ecosystem to the poised self-organized critical state where 
avalanches exhibit a power law distribution. 

4.5. A V A L A N C H E S  A N D  T H E  D I S T R I B U T I O N  O F  E X T I N C T I O N  E V E N T S  I N  T H E  R E C O R D  

These results may bear upon the distribution of  extinction events in the evolution- 
ary record. Raup (1986) has analyzed the intensity of  extinction events at the family 
level during each of  the 79 stages of  the entire Phanerozoic. On average, each stage 
is about  7 million years. Figure 13(a) shows Raup's histogram of  the number of  
extinctions per stage (intensity), graphed against the number of  stages exhibiting 
that intensity. Clearly, there are many more small extinction events than large events. 
Raup makes the point that the distribution is also clearly continuous. Figure 13(b) 
replots Raup's data in log-log form. Although the data are obviously too weak to 
place much weight upon, the log-log plot [Fig. 16(b) is clearly convex], suggesting 
that the observed distribution is not a power law. 

In so far as we wish to take these models seriously, Raup's data look like the 
K = 14 curves for both the 10x 10 and 5 x 5 ecosystems, corresponding to an 
ecosystem with K large enough that the frozen structure is somewhat firm, rather 
than extremely tenuous or extremely "solid".  
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What conclusions are warranted by these results? A first general conclusion is 
the insight that coevolutionary avalanches propagate through ecosystems, that such 
avalanches have characteristic frequency vs. size distributions which itself changes 
depending upon the parameters of the system. In particular the distribution of 
avalanche sizes depends upon how solid the "frozen" state is. If we tentatively 
accept Raup's data as weak evidence, the "frozen state" is modestly firm. 

A second and critical result is this: Perturbations of  the same initial size can unleash 
avalanches on a large variety of  length scales. This conclusion is clear and important. 
In these simulations, the perturbation in each case is a change in the "world" of a 
single randomly chosen species in the ecosystem. The same "size" perturbation of 
the external world generates a marked diversity of avalanches, with many small and 
few large avalanches. If we may tentatively assume that such avalanches can be 
linked to extinction events, then these results strongly suggest that uniform alterations 
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in the "external world" during evolution can cause a diversity of sizes in extinction 
events. This possibility stands in contrast to the general hypothesis that small and 
large extinction events must be associated with small and cataclysmic changes in 
the external world. Since the external environment has almost certainly undergone 
changes on a variety of  scales, we do not wish to assert that high variability in 
extinction sizes does not in part reflect a heterogeneity in intensity of  causes. But 
these results place part of  the responsibility for the diversity on the dynamics of  
coupled ecosystems and how "damage"  propagates. 

5. Inclusion of Density Dependent Population Dynamics 

Our analysis above has relied on use of  a simplified population dynamics. Each 
species, at each generation, tries a mutant variant and moves there as a whole if 
the mutant is better. Each species interacts at each moment with all its immediate 
neighbors in the ecosystem. The natural extension of  this class of  models considers 
a population for each species, subject to population growth characterized by familiar 
ecological models. Such models are based on " R "  and " K "  factors, where R reflects 
the intrinsic growth rate of  each population by itself, while K reflects "'density 
effects" due to the carrying capacity of  the environment which limits each popula- 
tion's increase to a standing abundance, and includes possible competitive, mutualis- 
tic and predator-prey interactions among the species (Roughgarden, 1979; May, 
1976; Pimm, 1982). 

To generalize our N K  coevolving model, we defined the fitness of each genotype 
of  each species in isolation from all other species to obtain its " R "  value, and 
assessed for each species, " i " ,  the effect of  a pair-wise interaction with a member 
of  each of the other species " j "  connected to it in the model ecosystem. We define 
"Ri"  as the fitness of the species in isolation minus 0.5, the mean fitness in the 
space of  genotypes. This definition allows a species to be an autotroph, Ri > 0, or 
an obligate heterotroph, R; <0.  We define "a~,/' as the fitness of species " i "  when 
it interacts with species j, minus 0.5. This definition allows interactions to be 
mutualistic, aij > 0, or competitive, a~.j < 0. We assumed that each species had the 
same carrying capacity, K. Then for each species, we utilized the familiar logistic 
equation: 

N 

d X , / d t  = X,[R,  - X , / K  + ( E a , . jXj) /K] .  

Here in the absence of  interactions by other species, each species will attain the 
stationary population, RiK. Positive or negative interactions by other species, re- 
garded as mutualism and competition, will, in general, alter the populat ion attained 
by each species. In studies which allowed species to mutate, we first confirmed that 
a mutant form initially present at low frequency compared to the "'wildtype", and 
which increased in abundance more rapidly than the wildtype, continued to do so 
until the wildtype populat ion was replaced. Having confirmed this under  a number 
o f  conditions, we substituted a simpler evolutionary dynamics: if a mutant form 
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initially increases in abundance  more rapidly in the current coevolutionary context 
than the wildtype, then the whole populat ion " m o v e d "  to the mutant  form. 

Analysis o f  these populat ion dynamic models appears  to confirm the results based 
on the simpler dynamics discussed above, but allows us to extend our results to 
look at the actual dynamics of  population abundances as well as changes of  
genotypes. We analyzed 5 x 5 ecosystems in which each "interior",  "edge"  or 
"corner"  species interacted with its four, three, or two nearest neighbors, as above, 
and also 5 x 5 ecosystems in which each "inter ior"  species interacted with its eight 
nearest neighbors, adjacent and diagonal, each "edge"  species interacted with its 
five nearest neighbors, and each "corner  species interacted with its three nearest 
neighbors. In addition, we examined the dynamics in 5 x 5 ecosystems in which 
each species interacted with all the other species directly. The major  results are 
similar. The major  differences, as the numbers  of  species connected to each species 
increases, are that ecosystems tend to be more volatile, hence that easy attainment 
of  Nash equilibria requires higher K values. Table 1 summarizes the data for the 
case in which the interior species interacts with eight species, with respect to mean 
populat ion attained, average aij  values, averate Ri values, average fraction of  
couplings from other species which are "mutualis t ic" ,  and average number  of  
mutations per species accepted over the run. Note that K = 4 yields the optimal 
sustained populat ion,  the highest mean ai.j coupling, the highest mean Ri, the highest 
fraction of  mutualistic couplings, and corresponds to a sharp drop in mutations 
accepted compared  to K = 2. The results, as the connectivity of  interior species 
increases f rom 4 to 8 then to 23, data not shown, are that the optimal value of  K 
increases from 2 to 4 and remains at 4 for the completely connected ecosystem. 

TABLE 1 

Results tabulated for 5 x 5 ecosystems in which interior species are connected 
to eight neighbors, edge species are connected to five neighbors, and corner 
species are connected to three neighbors. K values range from 0-16. Pop 
is mean sustained population density of  a species in the ecosystem, aij is 
mean value of  this measure of  mutualism among the 25 members of  the 
ecosystem. Ri is the mean self growth rate, autotrophic ~ positive, o f  the 
25 species in the ecosystem. Fraction mutualistic, the fraction o f  the couplings 
into each species which have aij values greater than O, hence it is the fraction 
of  couplings betwen species which are mutualistic to some degree. Mutations, 
the number of  mutations accepted per species over the simulated coevolution- 

ary period 

Fraction 
K Population a~.j  mutualistic R~ Mutation 

0 1593 0-009 0-506 0-158 47-4 
2 2103 0"077 0-600 0-205 38-2 
4 2264 0'138 0-657 0"210 14'0 
8 2064 0"090 0'599 0'196 10"2 

16 1276 0"027 0"522 0'158 5'3 
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Figures 14(a)-(c) examines the onset of  frozen components in 5 x 5 species model 
ecosystems in which each species interacts with eight, five, or three neighbors, by 
examining the number of  mutations which are "accepted"  among all 25 species at 
each ecosystem generation. In these simulations, C = 12, and K is 0, 4, and 16 
respectively. Note that when K is small relative to C, K = 0, the species in the 
ecosystem continue to mutate persistently throughout the run. Thus, the system 
never attains a Nash equilibrium. In contrast, when K is much larger than C, K = 16, 
most species stop finding fitter mutants after a few hundred generations, hence the 
ecosystem is largely frozen and unchanging. Since we here use the " r andom"  rather 
than "fit ter" of  "greedy"  dynamics, it is not entirely certain that the systems have 
attained true Nash equilibria. 

Figure 15(a)-(c), as well as Table 1, examine the emergence of  rnutualism in these 
models. Each species grows on its own, hence can be thought of  as an autotroph. 
But in addition, each species, in its interaction with other species, might be helped 
or harmed by that interaction. The N K  model, via the C couplings, permits the 
possibility that each species can change its genotype such that it is helped by its 
coevolutionary partners. Table 1 shows that mean at, j values are greater than 0 in 
all cases. Thus, mutualism emerges in these systems. Note also in Table 1 that the 
a~ d values increase then decrease as K increases. Figure 15 shows the details. For 
K = 0 massive fluctuations occur in a~.j values as coevolutionary changes propagate 
through the unfrozen ecosystem. The fluctuations keep the a~.j values low. Con- 
versely, for the largest value of  K, K = 16, ecosystems freeze easily, but the fraction 
of connections which are mutualistic has fallen, and mean a~.j values have decreased 
from the optimum at K = 4. Mutualistic interactions appear harder to attain when 
K is large and each system harbors more conflicting constraints. Thus, an intermedi- 
ate value of  K, K = 4, appears to optimize the ease of  forming strong mutualistic 
interactions. 

These figures also give a dramatic view of the periods of  quiescence and bursts 
of change which propagate through these model ecosystems, and for K = 16, give 
clear evidence of  the attainment of  a Nash or near Nash equilibrium. 

Figure 16(a)-(c) shows the actual population dynamics for these conditions. Note 
that for the highest value of  K, K = 16, population abundances increase rather 
smoothly to their carrying capacity. As K decreases, the population behavior 
becomes more erratic. Genotypic  changes show up as discontinuities in the rate of 
population change. For K = 0  it appears that several species actually decrease 
monotonically in abundance during the run. As emphasized in Table 1, for K = 0, 
2, 4, 8, and 16, the total abundances of  all species increases then decreases as K 
increases, reaching a maximum at K = 4. Thus, there is an optimal value of  K, as 
in the simplier dynamics studied above. 

5.1. INTERMITTENCY AND PUNCTUATED EQUILIBRIUM 

Another general feature of  these results, whether on extended or fully connected 
ecosystems, or including populations or not, is intermittency and bursts of  change. 
The most plausible "move"  dynamics which we consider is the " r andom"  dynamics, 
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where a random mutation is tried, and the species moves if a fitter variant is found. 
Under this dynamic, even in the absence of exogenous noise, the time history of a 
coevolving set of species shows periods of quiescence where no species finds a fitter 
variant, and bursts of change when one species finds a fitter variant and unleases 
an avalanche which propagates through the system. Figure 16(a)-(c) demonstrates 
this abundantly. It is tempting to associate these quiescent periods with stasis, and 
the bursts with punctuated change. 

6. Discussion 

The central issues we have investigated in this article are the relations between 
the structure of the fitness landscape of one coevolving partner, and the couplings 
between landscapes such that adaptive moves by one partner deform the landscapes 
of the adjacent partners, and their effects on the coevolutionary process. Further, 
we have focused on the possibility that a selective rnetadynamics acting on individual 
members of individual species, might alter the character of the coevolutionary 
process such that coevolving partners can coevolve well. With respect to the first 
set of issues, it is important to stress that our framework is very general. Coevolution 
is certainly some form of flow by each adapting population on a fitness landscape 
which deforms due to intraspecies and interspecies couplings. Contemporary dis- 
cussions of coevolution have developed without yet having a broad theory of the 
structure of complex fitness landscapes, and therefore without having a body of 
theory about the relationship between the multipeaked structure of fitness laiadscapes 
and their deformability and the consequent character of coevolutionary processes. 
The NK model has been discussed as perhaps the first, but surely not the only, 
family of rugged multipeaked fitness landscapes. Thus, the NK family of landscapes 
becomes increasingly more rugged as K increases from 0 to N. For K = 0, the 
landscapes have a single Fujiyama peak and smooth sides. For K = N - 1, landscapes 
are fully random. One can conceive of other ways to generate a family of correlated 
landscapes. For example, one might start with a completely random landscape, and 
successively "'smooth" it by replacing the fitness value at each vertex, or genotype, 
with the mean of it and its 1-mutant neighbors in the space. Such averaging is an 
analogue of diffusion. The statistics of such a diffusively smoothed family of 
landscapes may be similar to or very different from the NK family. In general, it 
seems a critical question whether there are a few basic families of rugged but 
correlated fitness landscapes, or very many. Whether few or many exist, our aim 
must be ultimately to characterize the actual statistical structure of fitness landscapes 
underlying biological evolution at molecular, morphological, and behavioral levels. 
Thereafter, we need to understand how richly coupled, hence deformable fitness 
landscapes actually are. 

A clear implication of these investigations is that the behavior of a coevolutionary 
system can be chaotic and disorganized, or highly orderly, depending upon the 
structures and couplings among the landscapes of the coevolving partners. In the 
current model, increasing K increases the ruggedness of individual fitness land- 
scapes. Increasing C increases the couplings between landscapes, hence the deforma- 
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tion to the frog as the fly makes an adaptive move. In completely connected model 
ecosystems, each species is coupled to all other species. More realistically, each is 
coupled to only a few other species, S~. Roughly speaking, if K > C x Si for each 
species, then the ecosystem as a whole reaches a Nash equilibrium rapidly. We 
referred to this Nash equilibrium, encompassing some or all of the species, as a 
frozen component in the ecosystem. If K is large enough, the ecosystem freezes 
rapidly and solidly. Conversely, and approximately stated, if K < C x S~, then the 
ecosystem does not rapidly reach a Nash equilibrium, and behaves chaotically. 
Thus, K relative to C x Si is a control parameter. As this ratio changes, the system 
passes from a chaotic "gas" like behavior, through a phase where frozen components 
just form, a kind of "liquid" phase, to a well-frozen "solid" phase. 

External perturbations due to changes in the abiotic environment, or internal 
changes under a random, rather than fitter or greedy evolutionary dynamics, can 
trigger avalanches of coevolutionary change which propagate through the system. 
The size distribution of avalanches depends upon how solidly frozen the ecosystem 
is, and appears to approach a power law distribution in the "liquid" region of the 
order parameter's value, when frozen components are just arising in the ecosystem. 
In the solid region, the distribution of the logarithm of the numbers of avalanches 
against the logarithm of avalanche sizes is convex rather than linear. Since such 
changes are associated with fluctuations to low fitness it is a real possibility that 
such avalanches are associated with extinction events. A central conclusion is that 
small and large extinction events can in principle issue from perturbations of the 
same small size. Thus, it may prove possible to predict the distribution of sizes of 
extinction events in the record. The data from the record are convex in a log-log 
plot, hence tend to support the hypothesis that ecosystems over evolutionary time 
are somewhat into the solid regime. 

Since coevolutionary dynamics depends upon the ruggedness of landscapes and 
the coupling of landscapes, it is hardly surprising that the sustained average fitness 
of coevolving partners depends upon these factors as well. This obvious point carries 
the possibility of a metadynamics in which selection favors individuals whose 
landscapes and landscape couplings are sculpted to abet coevolutionary success. 
Regardless of the detailed appropriateness of our N K  ecosystem model, therefore, 
we want to stress that evolution may have itself created the kinds of organisms and 
couplings among them which favor the capacity of species to actually typically 
succeed in adapting to one another. In turn, this possibility poses the problem of 
what the "proper" structure of an ecosystem might be to optimize coevolution. In 
the context of the NK model, we found evidence that sustained fitness is optimized 
when the ecosystem is in the liquid regime, "poised at the edge of chaos". Further, 
we found evidence that selection acting on individual members of individual species 
might pull each towards the poised state by tuning K relative to C × S~. Thus, at 
least the hint of a plausible metadynamics exists, and the hint that the edge of chaos 
might be an attractor of such an evolutionary metadynamics exists. Nevertheless, 
the supposition that the poised state where frozen components just form is the 
natural attractor for a coevolutionary metadynamics must be regarded cautiously. 
It remains to be seen whether such a state is the one which optimizes sustained 
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fitness even in the context of  the N K  model, for example if C or S can evolve as 
well as K, let alone models based on other families of  fitness landscapes and their 
couplings. Thus, we emphasize the distinction between the central idea that a 
metadynamics might tune the structure of  landscapes and their couplings to enhance 
sustained average fitness, and the more detailed possibility that the edge of  chaos 
is typically the attractor o f  such a selective metadynamics. 

7. Summary 

The capacity to coevolve successfully is not trivial, for mere chaotic twitchings 
of  the angry Red Queen may occur. We have introduced an approach to this question 
based on statistical models of  rugged fitness landscapes. Coevolution is thought of, 
at the lowest level, as a coupling of  landscapes, such that adaptive moves by one 
player deform the landscapes of  its immediate partners. In these models we are 
able to tune the ruggedness of  landscapes, how richly intercoupled any two land- 
scapes are, and how many other players interact with each player. We find that all 
these properties profoundly alter the character of  the coevolutionary dynamics. 

The results we have reached suggest some tentative conclusions and avenues of  
investigation. Landscapes need to be of sufficient ruggedness to offset the couplings 
between landscapes and the number of  partners whose moves impinge upon each 
landscape. Otherwise viewed, epistatic couplings within a species need to be large 
enough to counterbalance epistatic couplings to the other coevolving partners. We 
have identified possible selective forces which may tune these parameters such that 
coevolution is typically successful. 

Perhaps most intriguingly, we have found beginning evidence that if each species 
optimizes its own sustained fitness, such ecosystems might approach a poised self 
organized critical state, balanced on the edge of  chaos. Thus, we must consider a 
selective "metadynamics"  which sculpts the structure of  organisms, hence their 
fitness landscapes, and sculpts their couplings to one another to attain the coevolution 
of  poised, structured ecosystems which harbor nearly melted frozen components  
and permit propagation of  packets of coevolutionary change ringing in new species 
and ringing out old, with a characteristic distribution between cascade size and 
frequency. If  these views are right, then selection itself achieves ecosystems of a 
characteristic kind capable of  successful coevolution. 

This work was partially funded by N.I.H. GM 40186 and O.N.R. N000 14 89 J 1623. 
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