
Generating Tagged Web Corpora for Supervised Topic Detection and
Tracking

Chris Harman
Swarthmore College

500 College Ave
Swarthmore, PA 19081

charman1@cs.swarthmore.edu

Mustafa Paksoy
Swarthmore College

500 College Ave
Swarthmore, PA 19081

paksoy@cs.swarthmore.edu

Abstract

We implement a system for generating
large tagged corpora from the World Wide
Web. This system leverages the social
bookmarking sitedel.icio.us to gen-
erate a topic space using only a hand-
ful seed topics and training set for each
topic. We evaluate the effectiveness of this
system by using a TDT algorithm based
on Latent Semantic Analysis with text
frequency- inverse document frequency
coefficients. Our extremely simple TDT
system, performs poorly, yielding maxi-
mum f-values of 0.055. Given a topic
space of close to 1,000 tags this result is
still significantly better than random selec-
tion. Our corpus obviously contains useful
and relevant information that a more so-
phisticated TDT system can produce rea-
sonable results with.

1 Introduction

Topic Detection and Tracking (TDT) is crucial to
grouping information into categories so it can be
dealt with effectively. There currently exists several
supervised algorithms for performing TDT on a va-
riety of corpora with moderate success. However,
there is no good way to bootstrap these algorithms
to generate reasonable size training corpora for an
arbitrary size topic space.

Social bookmarking sites allow users to tag web-
pages and maintain records of these sites in a highly
accessible fashion. We leverage a social bookmark-
ing site,del.icio.us, to generate a large tagged
corpus of webpages.

We implement an extremely simple supervised
TDT system that does Latent Semantic Analysis

(LSA) using text frequency-inverse document fre-
quency (tf-idf) coefficients. In order to investigate
the usability of our corpus, We train this system and
evaluate its performance using our web generated
corpus.

2 Previous Work

Dumais et al. (1988) describe the method of us-
ing Latent Semantic Analysis (LSA). This method
involves creating vectors for each document in the
space of all words, and calculating the cosines of
these vectors in order to ascertain document similar-
ity.

Schultz and Liberman (1999) use also LSA for
TDT. However they use text frequency-inverse doc-
ument frequency (tf-idf) values for their vector co-
efficients. They cluster their results using single-
linkage clustering and cosine similarity. Their sim-
ilarity metric proves highly usable. However, their
clustering algorithm produces unusably large clus-
ters due to chaining.

There is no previous work that we know of in us-
ing social bookmarking sites to generate topic detec-
tion training and testing corpora.

3 Methods

Our project first requires that we generate a large
tagged corpus. This turns out to be non-trivial be-
cause of the unique method of corpus generation we
chose for the project; we use the social bookmark-
ing webpagedel.icio.us to aid in our corpus
generation.

Evaluating the performance of the system also re-
lies heavily ondel.icio.us. The tags we gener-
ate using tf-idf coefficients are meant to align with
the user-defined tags fromdel.icio.us.

� � � � � � �
� � � � 	 � �
 	

� � �
 � � �
� 	 � � � � 	

� � � �
 	
� � � � 	 � �
 	

� � � � � 	

� � � � � � �
 	

� � � �
� � � �

� � �
� 	 � � � � 	

Figure 1: Overall corpus generation system and evaluation system structure. The user provides a list of seed
tags. Tag list generator grabs list of all related tags for each tag. A vector is generated for each tag with
90% webpages belonging to that tag. The remaining sites are tagged using cosine similarity. The resulting
guessed tags are compared with actual tags that have been assigned to each webpage bydel.icio.us.

3.1 Generating Tagged Web Corpus

Dynamic corpus generation has the advantage of rel-
evancy. Our method of corpus generation retrieves
webpages. This allows for the effective tracking of
the given tags; things like popularity and relevancy
can be tracked using our method of corpus genera-
tion. Compared to archived corpora, our method of
corpus generation has the advantage of serving as a
“finger on the pulse” on the blogosphere.

3.1.1 Tag List Generation

del.icio.us has built-in functionality that al-
lows one to check the RSS feed for a given tag, ef-
fectively yielding the most popular webpages. This
functionality is accessed with HTTP:http://
del.icio.us/rss/tag/TAGTOCHECK. The
RSS feeds are parsed using theUniversal Feed
Parser (http://feedparser.org), an open
source Python library for handling XML feeds such
as RSS.

The initial step in the process of web corpus gen-
eration requires that one select several broad tags.
We picked the most popular tags listed ondel.
icio.us and added a few that we thought would

be interesting (about 100 tags combined). These
broad tags identify the general subject of the corpus
to be generated. Using with the broad topic tags, we
begin to traverse the sites tagged bydel.icio.us
users and we record the previously unseen tags.
This forms a large list of tags (approximately 1,000)
seeded by the original broad tags. With the newly
constructed large tag list, we again query for sites as-
sociated with the given tags to form our site list and
obtain them with our web grabber. Given the size of
del.icio.us’s user-base, this is the largest hand
tagged corpus imaginable.

3.1.2 Web Grabbing

The process of web grabbing is non-trivial be-
cause of the highly non-standard nature of the
HTML on the internet. del.icio.us does not
limit itself to particular sites, which required that
we write a general webpage parser that would out-
put text only. We use a Python package called
BeautifulSoup as the foundation of our general
HTML parser.

After running across countless examples of mal-
formed HTML code that would parse inconsistently,

we began searching for a parser with built-in mal-
formed HTML handling rather than attempting to
modify Python’sHTMLParser library extensively
with an overabundance of cases.BeautifulSoup
has this capability, it is self described as:

1. Beautiful Soup won’t choke if you give it bad
markup. It yields a parse tree that makes ap-
proximately as much sense as your original
document. This is usually good enough to col-
lect the data you need and run away.

2. Beautiful Soup provides a few simple methods
and Pythonic idioms for navigating, searching,
and modifying a parse tree: a toolkit for dis-
secting a document and extracting what you
need. You don’t have to create a custom parser
for each application.

3. Beautiful Soup automatically converts incom-
ing documents to Unicode and outgoing docu-
ments to UTF-8. You don’t have to think about
encodings, unless the document doesn’t spec-
ify an encoding and Beautiful Soup can’t au-
todetect one. Then you just have to specify the
original encoding.1

The “soup” that is returned from each site re-
quires further line-by-line cleaning because of our
tendency to grab more information from a given
webpage; this is done to ensure that as much text
is gleaned from a webpage as possible.

For each tag, a tenth of the webpages are excluded
from the training corpus and preserved for testing.
The rest are used to generate the tag vectors that
make up our topic space.

In the end we downloaded and cleaned more than
19,000 documents. We distributed this task to 20
different hosts in the Swarthmore College Computer
Science department network for performance sake.

3.1.3 Evaluation Tags

Once we have finished our tf-idf coefficient align-
ment process, we must have a method of evaluat-
ing the tag associations we have made. The obvi-
ous solution to this problem is to use the tags de-
fined bydel.icio.us’s user base for each par-
ticular webpage as an evaluation set.del.icio.

1The descrption above was taken fromhttp://www.
crummy.com/software/BeautifulSoup/.

us has built-in functionality specifically for this
task. This is done over HTTP by querying the fol-
lowing address:http://del.icio.us/rss/
url?url=URLTOCHECK. Again, results are re-
turned in the form of RSS files and theUniversal
Feed Parser is used to obtain tags for each web-
page. We include only those tags included in the
long list of tags generated initially (because it would
impossible for us to tag something with a tag un-
available to us initially) in the evaluation process and
generate precision and recall values for each web-
page.

3.2 Topic Detection

Our topic detection system mainly serves to demon-
strate the usefulness of our web generated corpus. It
is intentionally kept as simple as possible, to shed
light on the characteristics of the corpus we gen-
erate. The webpage groupings generated by our
topic detection system provide significant informa-
tion for searching, tracking and further categorizing
web sites. The process involves first generating a
semantic vector for each of the webpage’s articles.
The vectors are the compared using cosine similar-
ity to test their semantic relatedness. Depending on
the method of feature selection used, the compari-
son vector can be huge, the maximum size being the
total number of unique words in the corpora. This
alludes the problem of balancing sparse data; using
too many feature words lends itself to too many false
positives, overmatching and vice-versa. For simplic-
ity’s sake, we do not use any feature selection.

3.2.1 TF-IDF and Cosine Similarity

A semantic vector is generated for each document
with tf-idf values as coefficients. These vectors have
very high dimensionality and are very sparse. We
judge the similarity of two documents based on the
cosine of the angle between their vectors. Cosine is
given as:

cos(θ) = ~u·~v
|~u||~v|

The cosine quantifies the size of the angle be-
tween two vectors. Naturally, the closer the cosine
value is to one, the more semantically related two
documents are.

3.2.2 Semantic Vector

Generating the document frequencydf vector is
the first step in the process of generating a semantic
vector for each document. Thedf vector is generated
by stepping through every document in the corpus
and creating a hash of every unique word seen thus
far as a key. The contents of the hash is a count for
the number of documents which contain the word;
the count is incremented the first time a word is seen
in the document only.

Every document in the corpus is parsed word-by-
word to generate the term frequencytf vectors. We
normalize ourtf vectors by document length. This
ensures that words are properly weighted within a
given document; otherwise, longer documents with
inherently larger word counts would have skewed
tf-idf values compared to other documents. Divid-
ing tf by df represents a balance between relevance
and prevalence for every word in the document. The
words with high tf-idf values are said to have high
semantic value in the document. For this reason, the
tf-idf vector for a document is reffered to as a se-
mantic vector for the document.

We normalize webpage vectors by dividing each
tf value by document length. Initially we were not
doing this, however it proved necessary for allowing
short documents to be assigned a reasonable number
tags. Otherwise, longer documents push the average
cosine similarity values up, and make it impossible
for shorter documents to receive any tags.

3.2.3 Stop Words

There are particular words that have very little
semantic value. Definite and indefinite articles are
good examples of words that have no bearing on the
relatedness of two webpages. The hope is that words
with little semantic value are common enough that
their idf would bring the tf-idf to very close to zero.
We decided to create a stop word list that would
eliminate the need to process those words deemed
semantically insignificant. Part of our stop word list
is directly acquired from the internet. This is a list
of 700 words of very little semantic value for topic
detection.2

2The lists we used can be found at: http:
//www.pagex.com/webtools/stopwords.cfm
and http://www.dcs.gla.ac.uk/idom/ir_
resources/linguistic_utils/stop_words

We also chose not to process words that have a
df value of one. In general, these words are usually
gibberish and they only cloud our data.

We do not shorten our semantic vectors in any
other way. In other words, we don’t apply feature
selection.

3.2.4 Vector Comparison

The aim of our system is to use semantic vec-
tors to align webpages with the tags defined by users
of del.icio.us. This requires that we construct
vectors for each of the tags in our initial long list of
tags. We create a list of all webpages grouped by a
specific tag and generate a cumulativetf vector for
all of them; this is the tag’s semantic vector.

Individual webpages’ vectors are then compared
with the vectors from each of the tags using cosine
similarity. We use two very simple tag assignment
methods: a constant threshold and a tag-variable
threshold.

The constant threshold is constant for all tags and
documents. If the cosine similarity between any
webpage and a tag exceeds or equals the threshold,
the website is assigned the tag.

The tag-variable threshold changes for each tag.
If the cosine similarity of a webpage to tag exceeds
the threshold for that specific tag, the website is as-
signed that tag. Obviously, this second method is
more versatile and allows us to normalize for the
varying behavior of different topic vectors.

3.2.5 Evaluation

We evaluate our performance relative to thedel.
icio.us users’ tagging preferences. Thedel.
icio.us user base seems to be relatively tech-
savvy, as evidenced by the technical orientation of
many of the tags seen. We place confidence in
the fact that most technically-oriented people do not
frivolously tag webpages. We use standard informa-
tion metrics for evaluating our performance, namely
precision, recall and f-value. Precision is defined as
the number correct tags over the total number of tags
guessed for a webpage. Recall is defined as the num-
ber of correct tags over the number of the total num-
ber ofdel.icio.us users’ tags.

4 Results and Discussion

Our results are given in table 1.

Threshold Type Recall Precision f-value
Constant 0.069 0.042 0.052
Variable 0.072 0.045 0.055

Table 1: Best f-values produced by variable and con-
stant threshold tagging systems. Threshold is set to
three times the average cosine value.

We have selected our optimal thresholds by scan-
ning through multiples of the average cosine val-
ues (Figure 2). In the case where we use constant
thresholds, this is the average cosine of all webpages
and tags, which is approximately3.5×10

−4. For the
variable threshold algorithm a multiple of the aver-
age cosine value for each tag is used, these values
range between1.1 × 10

−3 and2.0 × 10
−4.

Overall, the TDT system performs poorly. Our
best f-values do not exceed 0.05. Still, we do achieve
recall values approaching 40%, which is remark-
able given simplicity of our TDT system. Given
a topic space approaching 1,000 tags, this perfor-
mance is significantly better than random selection.
This shows that our corpus highly usable.

Initially we intended to score tags differently
based on how many users assign them. This would
prevent our results from being adversely affected
just because a single user picks a poor tag. The
strength of social bookmarking sites comes from the
sheer abundance of cross-validation. Unfortunately,
del.icio.us does not provide information about
what tags are more prevalent in its RSS tags for
URLs. We believe outlier tags that we cannot, and
should not, assign to websites are greatly hurting our
f-values.

Looking at examples in Figure 3 we can see that
tags with overlapping subject matters are easily con-
fused. We believe this is greatly exacerbated by the
fact that we do not do feature selection. Feature se-
lection would reduce the breadth of each tag, pre-
venting this behavior.

We also noticed that webpages that have less text,
get assigned more tags by the guesser. This is be-
cause we normalize tf values by dividing by docu-
ment length. As a result, most words in short web-
sites get high tf values, thus appear to contain rele-
vant keywords to many tags.

5 Conclusion

At a glance, the performance of our TDT system is
unimpressive. However, it should be noted that this
system is just inadequate given the size and hetero-
geneity of our corpus. There is no doubt a topic de-
tection system better equipped handle noise and take
advantage of the size of the corpus would perform
much better.

With this in mind, our corpus appears very
promising. With minimal human input it creates
training and testing corpora in a remarkably large
topic space.

6 Future Work

This paper mainly focuses on generating train-
ing corpora arbitrary size topic spaces using social
bookmarking webpages. As such, our TDT system
is exceedingly simple. One simple improvement to
our TDT system is to add feature selection. Due to
the size of our topic space, we have several tags that
have very similar vectors. Feature selection would
help amplify these differences.

Combining equivalent tags would also help. For
example, our tag list contains separate tags chris-
tian and christianity; it would probably be a good
idea to combine these two tags. This would orthog-
onalize our topic space and yield fewer yet more
meaningful tags for each document. Megan Schus-
ter and Anne Marie Frassica use a semantic graph
to conflate words with similar semantic content, this
method should also be usable in our case.

As previously states, we can improve our evalua-
tion method by allowing tags to have differing val-
ues based on their popularity. This way we would
not be penalizing our TDT system for not assigning
superfluous tags.

Finally, an approach based on self-organizing
maps, or neural networks could also be attempted.
These methods are highly suitable for the kind of
corpus that we generate because they require a lot of
training data and handle noise extremely well.

References
Susan T. Dumais, George W. Furnas, Thomas K. Lan-

dauer, Scott Deerwester, and Richard Harshman.
1988. Using latent semantic analysis to improve ac-
cess to textual information. InProceedings of the

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 1.5 2 2.5 3 3.5 4 4.5 5

Threshold (x average cosine value per tag)

Performance using tag based threshold

Recall
Precision

f-value

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 1.5 2 2.5 3 3.5 4 4.5 5

Threshold (x average oveall cosine value)

Performance using constant threshold

Recall
Precision

f-value

Figure 2: Threshold selection while using constant and variable thresholds. In both cases, optimal f-values
are obtained when the threshold equals 3 average cosine.

• USA Today article on the Iranian Holocaust denial conference
international christian iraq pseudoscience israel beautiful links united law hanukkah articles rhetoric
typography war bush mysticism artist europe unitedstates cartoon world walks fabric islam us
www.directories slang

• Guide to performing the Muslim ritual prayer
ala egyptian tagging christian tags bloggers bornagain study fundamentalism interview philosophy cat-
alog president hanukkah help grammar cartoons team scary microfinance dawkins typography etext
yahoo! photo mysticism mythology buddhism cartoon parody religion christianity islam heat atheism

Figure 3: Example guessed tags.

Conference on Human Factors in Computing Systems
CHI’88.

J. Schultz and M. Liberman. 1999. Topic detection and
tracking using idfweighted cosine coefficient.

