
Generating computer security audit logs
with interposing libraries

Mustafa M. Paksoy '07, Prof. Benjamin A. Kuperman (advisor)
Computer Science Department, Swarthmore College, Swarthmore, Pennsylvania 19081

Library Interposition
On modern operating systems, calls to
functions in shared libraries are linked at
runtime. Thus, any library interposed between
shared libraries and the calling application can
intercept calls to these dynamically loaded
libraries (.dll files on Windows and .so on
Linux).
Our implementation of library interposition
uses the environment variable LD_PRELOAD
to force the loader to resolve function calls to
our libraries first.

Shared
Libraries

Calling
application

Interposing
Libraries

Interposed
 call

Normal Call

Normal Return

Collected
data

Interposed
return

Fig. 2. Library interposition

Introduction
Computer Security Monitoring (CSM)
systems operate by analyzing audit logs for
evidence of attack. Incidentally, CSM systems
usually work with inadequate audit data
sources that are available by default. Yet, any
analysis scheme is only as good as the data it
is working with-- garbage in, garbage out. Our
audit log generator tries to mitigate this
problem by generating audit data that will
yield well to specific CSM analysis purposes.

Monitoring system

Audit data

input output

Response
 (i.e. alerts)

Fig. 1. Operation of
Computer Security
Monitoring (CSM)
systems

Log Structure
Our binary log files have a hierarchical structure similar to Sun
Basic Security Module (BSM) logs.
Information collected by interposed libraries is composed into
tokens that represent basic elements of data such as strings and
integers. Tokens are combined into log entries that contain
information relating to single events. These entries make up logs.

Log generation
library

Binary log

Log Entry

Header

Token

Token

Token
Combination of
primitive
data types

Timestamp

Entry size
Title

Fig. 4. Structure of binary logs

Application Structure
Over the summer we have redesigned and implemented an audit system
with three interposing libraries, each designed to serve one of attack,
intrusion and misuse detection.
The sytem we started with was initially designed on the operating
system Sun Solaris. We ported the core of it over to Linux Debian (used
on Computer Science dept. computers) and rewrote much of the rest.
We pursued a highly modular approach in our redesign to make testing
and maintenance of it easier. This way we could tweak a certain
functionality easily without having to rewrite any other parts.
The interposing libraries (See section: Library Interposition) use
functions in the log generation library to record data in binary form.
This data is stored in log files associated with each library.
Although binary log files are an efficient way of storing data, they are
not easy to handle. So we wrote a different application that can read
these files into main memory, and yet another that can print them out in
either human readable or parsable form. This output can then be
recorded as text log files or printed to the screen.

Log generation
library

Attack Binary
Log

Attack Library Intrusion Library Misuse Library

Intrusion Binary
Log

Misuse Binary
Log

Attack Text Log Misuse Text LogIntrus'n Text Log Screen

Log reader library

Log printer
library

Fig. 3. Organization of our application

Future Work
Having completed the application design and implementation
process we would now like to design a testing framework to make
quantitative observations. Tests we would like to do include:
• Code coverage testing and profiling
• Comparison to other audit log generation methods in terms of
performance impact, volume of logs generated, flexibility
• Run a set of known exploits (attacks) on the application and
evaluate the usefulness of audit data generated about them
Further work using library interposition can include:
• Application sandboxing: limiting a non-trusted application's access
to system resources
• Network monitoring through interposing TCP/IP libraries

Acknowledgments
Thanks to all Computer Science faculty, students and staff for their friendliness and
helpfulness throughout the summer. Mustafa's work over the summer was made
possible by Swarthmore College Office of the Provost through a Swarthmore
College Student Summer Research Fellowship. Finally, thanks to Colin Purrington
of Swarthmore College Biology dept. for the poster tempelate.

For more information contact: mpaksoy1@swarthmore.edu

