Plasma Waves

Dispersion Relations

Waves of different frequency travel at different speeds in a dispersive medium, and the frequency ω can be expressed as a function of the wave number k. This is known as the *dispersion relation*. For example, light waves in a vacuum have the dispersion relation $\omega = ck$, and sound waves also have a linear dispersion relation.

In plasmas, there are a variety of waves which propagate with a variety of nonlinear dispersion relations. We will examine a few of these waves and the approximations needed to find their dispersion relations. For more information, see Goldston and Rutherford's *Plasma Physics*.

Plasma Oscillation: A Simple Model

Consider a section of plasma of cross-section A in which the electrons have been diplaced from their equilibrium condition by a distance δ , leaving the ions unmoved. The electric field in the plasma is like the field inside a parallel plate capacitor,

$$E = \frac{\sigma}{\epsilon_0} = \frac{en_e\delta}{\epsilon_0} \tag{1}$$

where e is the electron charge and n_e is the number density of electrons. The force on the electrons due to this field is given by

$$F = Q_{total}E = (en_e\delta A)\frac{en_e\delta}{\epsilon_0} = \frac{e^2n_e^2\delta A}{\epsilon_0}\delta$$
⁽²⁾

By Newton's Second Law, we can also write the force as

$$F = M_{total}\ddot{\delta} = m_e n_e \delta A \ddot{\delta} \tag{3}$$

Combining Eqs. (2) and (3) gives simple harmonic motion:

$$\ddot{\delta} = \omega_p^2 \delta, \quad \omega_p = \left(\frac{n_e e^2}{m_e \epsilon_0}\right)^{\frac{1}{2}} \tag{4}$$

The electric field pulls the electrons back towards equilibrium, where they exactly neutralize the ion charge, but the kinetic energy gained in this process causes the electrons to overshoot to a new displacement on the other side.

Langmuir Waves

We will now perform a more sophisticated analysis of the same situation. Adding a term for the scalar electron pressure (∇p_e) to the net force and performing the chain rule to find $\frac{d\mathbf{u}_e}{dt}$, where \mathbf{u}_e is the velocity, Newton's Second Law becomes

$$m_e n_e \left[\dot{\mathbf{u}}_e + \left(\mathbf{u}_e \cdot \nabla \right) \mathbf{u}_e \right] = -e n_e \mathbf{E} - \nabla p_e \tag{5}$$

We make the assumption that \mathbf{u}_e , n_e , \mathbf{E} , and p_e each have a constant part (like \mathbf{u}_0) added to a very small oscillating part (like \mathbf{u}_1). If the oscillations are assumed to be harmonic and in the *x* direction (so that the oscillating parts have the form $e^{i(kx-\omega t)}$), the ∇ operator becomes ik, and $\frac{\partial}{\partial t}$ becomes $-i\omega$. Letting $u_0 = 0$, $E_0 = 0$, and neglecting second-order terms, Eq. (5) becomes

$$-i\omega m_e n_0 u_1 = -e n_0 E_1 - ik p_1 \tag{6}$$

We can write the continuity equation (statement of local electron charge conservation) as

$$\dot{n}_e + \nabla \cdot (n_e \mathbf{u}_e) = 0 \implies -i\omega n_1 + ikn_0 u_1 = 0 \tag{7}$$

To write Gauss's Law, we also have to consider the ions, since they contribute to the E-field. Assuming they each have charge +e and that the ion density is n_i , Gauss's Law becomes

$$\epsilon_0 \bigtriangledown \cdot \mathbf{E} = e \left(n_i - n_e \right) \Rightarrow i k \epsilon_0 E_1 = -e n_1 \tag{8}$$

Substituting from Eqs. (7) and (8) into Eq. (6) gives

$$\frac{i\omega^2 m_e n_1}{k} = \frac{-e^2 n_0 n_1}{ik\epsilon_0} + ikp_1 \tag{9}$$

With the assumption that the electron compression occurs one-dimensionally and faster than thermal conduction, we have $p_1 = \gamma T n_1$, with $\gamma = 3$. Substituting this into Eq. (9) and rearranging, we have the Bohm-Gross dispersion relation for electrostatic plasma waves (Langmuir waves),

$$\omega^2 = \frac{e^2 n_0}{m_e \epsilon_0} + \frac{3k^2 T}{m_e} = \omega_p^2 + 3k v_{t,e}^2 \tag{10}$$

where $v_{t,e}$ is the electron thermal velocity. We can trace this additional frequency component to the inclusion of electron pressure in our forces. Note that because of it, $\omega \leq \omega_p$. Also, for long wavelengths (low k) or low temperature, the wave phase velocity $\frac{\omega}{k}$ can become larger than $v_{t,e}$, or even larger than c (which is fine, since energy travels at the group velocity, not the wave velocity). See attached Figure (1) for a graph of this dispersion relation.

Note that we can confirm that this situation is electrostatic by finding the first-order expression for \mathbf{J} ,

$$\mathbf{J} = -en_0u_1 = -e\frac{\omega}{k}n_1 = i\omega\epsilon_0 E_1 = -\epsilon_0\dot{E}_1 \tag{11}$$

and seeing that Ampère's law with Maxwell's correction goes to zero:

$$\nabla \times \mathbf{B}_1 = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \dot{\mathbf{E}}_1 = 0 \tag{12}$$

Ion Sound Waves

Another electrostatic plasma wave arises from the motion of the ions, caused by a pressure of the form nkT. The dispersion relation for these waves is shown in Figure (2). For small k, it has the linear form of a normal sound wave, with a slope of the ion sound speed $C_s = (T_e/M)^{1/2}$. Compare the graph of this dispersion relation with the Langmuir wave dispersion relation.

The Dielectric Tensor

More plasma waves arise when we consider a background magnetic field, \mathbf{B}_0 . When the waves propagate perpendicular to the magnetic field $(\mathbf{k} \perp \mathbf{B}_0)$, we see ordinary waves (O-waves) whose electric fields are oriented along the magnetic field $(\mathbf{E}_1 \parallel \mathbf{B}_0)$ and extraordinary waves (X-waves) with $\mathbf{E}_1 \perp \mathbf{B}_0$. When the waves propagate along the magnetic field $(\mathbf{k} \parallel \mathbf{B}_0)$ and when $\mathbf{E}_1 \parallel \mathbf{B}_0$, we see the Langmuir waves described earlier, but when $\mathbf{E}_1 \perp \mathbf{B}_0$, we have left and right circularly polarized waves (L and R waves).

Using tensor notation, all of these waves can be consider together. The fluid equation of motion (making the same approximation as before that each quantity has a constant part and a very small oscillating part) can be written as

$$mn_0 \frac{\partial \mathbf{u}_1}{\partial t} = qn_0 \left(\mathbf{E}_1 + \mathbf{u}_1 \times \mathbf{B}_0 \right) - \gamma T \bigtriangledown n_1$$
(13)

(Compare to Eq. (5).) Making the same approximation of harmonic oscillations in each dimension, and again linearizing the continuity equation, we obtain a set of linear equations for the components of \mathbf{u}_1 . We then use Ohm's law to find the electrical conductivity tensor:

$$\mathbf{J}_1 = \sum n_0 q \mathbf{u}_1 = \underline{\sigma} \cdot \mathbf{E}_1 \tag{14}$$

The tensor conductivity can be substituted into the wave equation, and we derive

$$\left(\omega^2 \mu_0 \underline{\epsilon} - k^2 \mathbb{X}\right) \cdot \mathbf{E}_1 = 0 \tag{15}$$

where $\underline{\epsilon}$ is the dielectric tensor, given by

$$\underline{\epsilon} = \epsilon_0 \left(\mathbb{I} + \frac{i\underline{\sigma}}{\epsilon_0 \omega} \right) \tag{16}$$

and X is the tensor defined by $X = I - \mathbf{kk}/k^2$, which, letting θ be the angle between \mathbf{k} and \mathbf{B}_0 and choosing $k_y = 0$ so that $\mathbf{k} = k \sin \theta \hat{x} + k \cos \theta \hat{z}$, looks like

$$\mathbb{X} = \begin{pmatrix} \cos^2 \theta & 0 & -\sin \theta \cos \theta \\ 0 & 1 & 0 \\ -\sin \theta \cos \theta & 0 & \sin^2 \theta \end{pmatrix}$$
(17)

The dispersion relation can be found by setting the determinant of the tensor quantity in parenthesis in Eq. (15) equal to zero.

Magnetohydrodynamic Oscillation

According to Alfvén's Theorem (remember my presentation two weeks ago?), the magnetic flux through any closed loop moving with a plasma is constant in time, which means that the plasma is dragged around with the field lines. If some perturbation, such as a current loop, causes some field lines to be pulled together, this generates a pressure of the form $\frac{B^2}{2\mu_0}$, and the movement of the plasma to relieve this pressure results in another oscillation - Alfvén waves. We can find the characteristic speed of these waves by setting the energy density $\frac{1}{2}\rho v^2$ equal to the pressure density $\frac{B^2}{2\mu_0}$ to get

$$v_A = \left(\frac{B^2}{\rho\mu_0}\right)^{\frac{1}{2}} \tag{18}$$