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Plasma Waves

Dispersion Relations
Waves of different frequency travel at different speeds in a dispersive medium, and the frequency ω can be

expressed as a function of the wave number k. This is known as the dispersion relation. For example, light waves
in a vacuum have the dispersion relation ω = ck, and sound waves also have a linear dispersion relation.

In plasmas, there are a variety of waves which propagate with a variety of nonlinear dispersion relations. We
will examine a few of these waves and the approximations needed to find their dispersion relations. For more
information, see Goldston and Rutherford’s Plasma Physics.

Plasma Oscillation: A Simple Model
Consider a section of plasma of cross-section A in which the electrons have been diplaced from their equilibrium

condition by a distance δ, leaving the ions unmoved. The electric field in the plasma is like the field inside a parallel
plate capacitor,
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where e is the electron charge and ne is the number density of electrons. The force on the electrons due to this
field is given by
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By Newton’s Second Law, we can also write the force as

F = Mtotalδ̈ = meneδAδ̈ (3)

Combining Eqs. (2) and (3) gives simple harmonic motion:
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The electric field pulls the electrons back towards equilibrium, where they exactly neutralize the ion charge, but
the kinetic energy gained in this process causes the electrons to overshoot to a new displacement on the other side.

Langmuir Waves
We will now perform a more sophisticated analysis of the same situation. Adding a term for the scalar electron

pressure (5pe) to the net force and performing the chain rule to find due
dt , where ue is the velocity, Newton’s Second

Law becomes
mene [u̇e + (ue · 5) ue] = −eneE−5pe (5)

We make the assumption that ue, ne, E, and pe each have a constant part (like u0) added to a very small oscillating
part (like u1). If the oscillations are assumed to be harmonic and in the x direction (so that the oscillating parts
have the form ei(kx−ωt)), the 5 operator becomes ik, and ∂

∂t becomes −iω. Letting u0 = 0, E0 = 0, and neglecting
second-order terms, Eq. (5) becomes

−iωmen0u1 = −en0E1 − ikp1 (6)

We can write the continuity equation (statement of local electron charge conservation) as

ṅe +5 · (neue) = 0 ⇒ −iωn1 + ikn0u1 = 0 (7)

To write Gauss’s Law, we also have to consider the ions, since they contribute to the E-field. Assuming they each
have charge +e and that the ion density is ni, Gauss’s Law becomes

ε0 5 ·E = e (ni − ne) ⇒ ikε0E1 = −en1 (8)



Substituting from Eqs. (7) and (8) into Eq. (6) gives

iω2men1

k
=
−e2n0n1

ikε0
+ ikp1 (9)

With the assumption that the electron compression occurs one-dimensionally and faster than thermal conduction,
we have p1 = γTn1, with γ = 3. Substituting this into Eq. (9) and rearranging, we have the Bohm-Gross dispersion
relation for electrostatic plasma waves (Langmuir waves),
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where vt,e is the electron thermal velocity. We can trace this additional frequency component to the inclusion
of electron pressure in our forces. Note that because of it, ω ≤ ωp. Also, for long wavelengths (low k) or low
temperature, the wave phase velocity ω

k can become larger than vt,e, or even larger than c (which is fine, since
energy travels at the group velocity, not the wave velocity). See attached Figure (1) for a graph of this dispersion
relation.

Note that we can confirm that this situation is electrostatic by finding the first-order expression for J,

J = −en0u1 = −eω
k
n1 = iωε0E1 = −ε0Ė1 (11)

and seeing that Ampère’s law with Maxwell’s correction goes to zero:

5×B1 = µ0J + µ0ε0Ė1 = 0 (12)

Ion Sound Waves
Another electrostatic plasma wave arises from the motion of the ions, caused by a pressure of the form nkT .

The dispersion relation for these waves is shown in Figure (2). For small k, it has the linear form of a normal sound
wave, with a slope of the ion sound speed Cs = (Te/M)1/2. Compare the graph of this dispersion relation with the
Langmuir wave dispersion relation.

The Dielectric Tensor
More plasma waves arise when we consider a background magnetic field, B0. When the waves propagate

perpendicular to the magnetic field (k ⊥ B0), we see ordinary waves (O-waves) whose electric fields are oriented
along the magnetic field (E1 ‖ B0) and extraordinary waves (X-waves) with E1 ⊥ B0. When the waves propagate
along the magnetic field (k ‖ B0) and when E1 ‖ B0, we see the Langmuir waves described earlier, but when
E1 ⊥ B0, we have left and right circularly polarized waves (L and R waves).

Using tensor notation, all of these waves can be consider together. The fluid equation of motion (making the
same approximation as before that each quantity has a constant part and a very small oscillating part) can be
written as

mn0
∂u1

∂t
= qn0 (E1 + u1 ×B0)− γT 5 n1 (13)

(Compare to Eq. (5).) Making the same approximation of harmonic oscillations in each dimension, and again
linearizing the continuity equation, we obtain a set of linear equations for the components of u1. We then use
Ohm’s law to find the electrical conductivity tensor:

J1 =
∑

n0qu1 = σ ·E1 (14)

The tensor conductivity can be substituted into the wave equation, and we derive(
ω2µ0ε− k2

X

)
·E1 = 0 (15)

where ε is the dielectric tensor, given by
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and X is the tensor defined by X = I−kk/k2, which, letting θ be the angle between k and B0 and choosing ky = 0
so that k = k sin θx̂+ k cos θẑ, looks like

X =

 cos2 θ 0 − sin θ cos θ
0 1 0

− sin θ cos θ 0 sin2 θ

 (17)

The dispersion relation can be found by setting the determinant of the tensor quantity in parenthesis in Eq. (15)
equal to zero.

Magnetohydrodynamic Oscillation
According to Alfvén’s Theorem (remember my presentation two weeks ago?), the magnetic flux through any

closed loop moving with a plasma is constant in time, which means that the plasma is dragged around with the
field lines. If some perturbation, such as a current loop, causes some field lines to be pulled together, this generates
a pressure of the form B2

2µ0
, and the movement of the plasma to relieve this pressure results in another oscillation -

Alfvén waves. We can find the characteristic speed of these waves by setting the energy density 1
2ρv

2 equal to the
pressure density B2

2µ0
to get
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