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Vacuum Fluctuations and the Casimir Force

I mentioned my results to Niels Bohr, during a walk. That is nice, he said, that is something
new. I told him that I was puzzled by the extremely simple form of the expressions for the
interaction at very large distances and he mumbled something about zero-point energy.
That was all, but it put me on a new track.

—H. B. G. Casimir [1]

The Casimir Force was predicted in 1948 by Dutch physicist Hendrick Casimir. Casimir realized
that when calculating the energy between two parallel uncharged conducting plates, only those virtual
photons whose wavelengths fit an integral number of times into the gap should be counted. Each mode
contributes to a pressure on the plates, and the infinite number of modes outside the plates is in some
sense greater than the infinite number inside the plates, resulting in a small force drawing the plates
together. This experimentally-confirmed force is one observable consequence of the existence of the
vacuum electromagnetic field.

Theoretical Background

First, let us review the tools we have developed through Loudon to analyze the quantum vacuum. In
§4.4, when he quantized the electromagnetic field, Loudon expressed the radiation Hamiltonian as

ĤR =
∑
k

∑
λ

~ωk

(
â†kλâkλ +

1
2

)
. (1)

Then in §6.2, he expressed this in continuous variables,

ĤR =
∫ ∞

0

~ωâ†(ω)â(ω)dω + vacuum energy, (2)

where he ignored the infinite contribution due to the vacuum energy. Up till now, we have been able
to ignore this infinite ground state contribution because we have been interested in measuring the
intensity of a light beam, which means that we were detecting changes above this level [2]. Now we
will consider the vacuum state of the electromagnetic field, in which there are no photons excited in
any mode.

In §4.4, Loudon defined the vacuum state, | {0}〉 , as the the state with no photons in any mode
(nkλ = 0 for all k and λ), which means that the destruction operator gives âkλ | {0}〉 = 0 for all k
and λ. Using Eq. (1), the energy eigenvalue equation becomes

1
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~ωk | {0}〉 = E0 | {0}〉 , (3)

resulting in a vacuum energy

E0 =
1
2
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∑
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~ωk, (4)
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where we have summed over two polarizations.
First, consider a one-dimensional system where two conducting reflecting mirrors are placed a

distance L apart. The presence of the cavity allows only discrete modes, and in §1.10 Loudon showed
that boundary conditions in such a cavity require a density of modes k = νπ/L. We can then write
the energy inside the cavity using the one-dimensional version of Eq. (4):

Ecav =
∑
k

~ck =
π~c

L

∞∑
ν=1

ν. (5)

The vacuum energy in the same space but without the mirrors is the same expression, with the discrete
ν replaced by a continuous variable:

Efree =
π~c

L

∫ ∞
0

νdν. (6)

Note that both of these energies are infinite. Now consider their difference, which is the change in
energy produced by the presence of the cavity:

∆E = Ecav − Efree =
π~c

L

[ ∞∑
ν=1

ν −
∫ ∞

0

νdν

]
. (7)

As I will demonstrate, this can be solved by using the Euler-Maclaurin summation formula [1] and a
conversion factor, limε→∞ e−εν , resulting in

∆E = −π~c
12L

. (8)

There is therefore an attractive force between the two mirrors:

F =
∂∆E
∂L

= − π~c

12L2
. (9)

We thus have the fascinating result that there can be finite changes in the infinite electromagnetic
vacuum energy, at least in this one-dimensional model.

Since we live in a 3D world, the modes with wavevectors that are not perpendicular to the mirrors
must also be included in our analysis. If we consider a box with two sides (x and y) of length D, and
the third (z) of length L, where L � D, the sums for x and y can be replaced by integrals, and the
energy difference can be written by:
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(10)

This time using the third derivative in the Euler-Maclaurin summation formula, we can write [1]

∆E = −
(
π2
~c

720L3

)
D2, (11)
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resulting in a force per unit area (pressure) of

P = − π2
~c

240L4
=

0.013
L4

dynes/cm2, (12)

where L is measured in µm. To get a sense of magnitude, when L = 1µm, the Coulomb force between
the plates is greater than the Casimir force if there is a potential difference of only 17 mV. Note that
the result of Eq. (12), while more realistic than Eq. (9), assumes that the material is perfectly reflective
at all frequencies. Besides the finite conductivity of actual plates, the other important correction to
the Casimir force is the effect of finite temperature [3]. To derive a corrected result is beyond the
scope of this presentation; if interested, see Milonni, Chapter 6, for more detail [1].

Experiments

To measure the Casimir force between dielectrics, it is necessary to precisely measure the separation
of two dielectrics as well as the force between them. Since both of these quantities are quite small,
this is no easy matter.

The first attempt to measure the Casimir force between conducting plates was made by Sparnaay
in 1958. He measured the force using the deflection of a spring attached to a steel beam, which was
attached to a capacitor; a deflection in the spring resulted in a measurable change in the capacitor’s
capacitance [1]. While his results were consistent with Casimir’s theory, the uncertainty was about
100% [3].

The first really accurate measurements of the Casimir force were performed by Lamoreaux and
published in 1997. Lamoreaux measured the force between a flat plate and a spherical lens, making
the necessary adjustments to the theoretical prediction. The plate and lens were coated with copper
and gold on the faces that were brought together. The plate was connected to a torsion pendulum
which measured the force between the two surfaces. The separation of the surfaces was controlled by
a micropositioning assembly, and at each separation, the voltage was measured that was needed to
keep the pendulum at a fixed angle. Lamoreaux measured the attractive force to within 5% of theory
[3].

Later that year, Mohideen and Roy published another measurement of the Casimir force, this time
to within 1% of theory. They used aluminum-coated materials, a small sphere (200± 4µm diameter)
on the tip of a cantilever and a flat plate. The force on the sphere was determined by measuring the
deflection of the cantilever a laser [4].

Just this year, a group from Bell laboratories performed the first measurement of the Casimir force
on a mechanical system. They demonstrated that when surfaces are within 100 nm, the oscillatory
behavior of microstructures changes. An alternating field was applied to a metallic paddle, causing it
to oscillate. They they lowered a gold-plated sphere with a diameter of 100 µm towards the paddle,
and they detected changes in the amplitude and frequency of the oscillations. In fact, the Casimir
force introduces various nonlinear effects, such as hysteresis [5]. Other researchers, such as Mohideen,
are exploring applications of these findings to the design of micromachines, such as using a version of
this oscillator as a precise position sensor [6].
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Conclusions

The vacuum field is a quantum phenomenon with no classical analog. Besides the Casimir force, it
is evident in the Lamb shift, spontaneous emission, van der Waals forces, and many other effects.
The Casimir-Polder force, which is related to the Casimir force, describes the attraction between a
conducting plate and a neutral atom [1].

It is worth noting that the attractive Casimir force between two plates that we have been consid-
ering depends on the geometry of the plates. Initially, Casimir developed a model for the electron as
a spherical shell of charge, and he suggested that the Casimir force might counter the electrostatic
repulsion [1]. In 1968, however, Timothy Boyer showed that the geometry of two hemispheres causes
a repulsive force due to the zero-point energy, not an attractive one [7].

Besides being used in various engineering applications, the Casimir force may have important
implications for theoretical physics. For instance, one (not necessarily reliable) source suggests that
the Casimir force shows that if supersymmetry exists, it must be a broken symmetry, since otherwise
there would be fermionic photinos whose contribution would exactly cancel that of the photons. It also
claims that the vacuum energy ought to act gravitationally to produce a large cosmological constant
which would cause space-time to curl up, and quantum gravity might solve this paradox [8].
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