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Abstract

The theory of quantum computation, a new and promising field, is discussed. The
mathematical background to the field is presented, drawing ideas both from quan-
tum mechanics and the theory of classical computation. The quantum circuit
model of computation is discussed, and a universal set of quantum logic gates is
investigated. Quantum algorithms are examined, focusing particularly on Grover’s
database search algorithm and Shor’s factoring algorithm, the two best known quan-
tum algorithms. Finally, an implementation of quantum computation using linear
optics is developed.
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1 Introduction

1 Introduction

The theory of quantum mechanics developed in the early part of the twentieth cen-
tury is a theory of the very small. A very mathematical theory, it nevertheless makes
predictions that agree to fantastic precision with experimentally determined results.
In order to make the theory agree with the physical world, however, scientists have
been forced to part with the determinism of classical physics in favor of proba-
bilistic quantum mechanical predictions. This sacrifice of determinism has been
ameliorated, however, by the identification of the quantum mechanical properties
of superposition, interference, and entanglement as powerful resources. The theory
of quantum computation exploits these tools to perform computation exponentially
faster in some cases than is possible with any classical computer.

The theory of classical computation stands in stark contrast to quantum theory.
It is not a theory describing the physical world; rather, it is purely mathematical,
designed to provide a framework for studying algorithms. Much of computational
theory is centered around the idea of the Turing machine, named after Alan Turing,
the British mathematician who pioneered the field. A Turing machine is a simple
theoretical construct that has proved useful in studying computation, and one of the
great triumphs of computer science has been to prove that there is no possible com-
putation that cannot be performed on this simple apparatus. This idea is embodied
in the Church-Turing thesis, which states that the class of functions computable by a
Turing machine is exactly the class of functions computable by algorithm [1]. Thus,
the study of the theory of computation may be reduced to the study of the Turing
machine. While the full theory of Turing machines and computation is beyond the
scope of this paper, we will on occasion make use of some of the concepts involved.

On the surface, then, it would appear that the fields of classical computation and
quantum mechanics have no relation to one another. Indeed, the connection between
the two is subtle, and was not recognized until the 1980s. Appropriately enough,
the first hints of this link grew out of information theory, a subject that also links
together abstract mathematical notions with the physical world. One fundamental
result from information theory is Landauer’s Principle, which states that for every
bit of information erased by a computing device, an amount of energy equal to
kT ln 2 is released into the environment, where k is Boltzmann’s constant and T is
the temperature of the environment [2]. As heat dissipation is generally an unwanted
side effect of computation, researchers began to study the possibility of computation
without erasure. This led to the development of reversible computation, where every
computation may be run backwards and thus loses no information. This result in
turn led some scientists to wonder if quantum mechanical systems could be used
to compute, since quantum systems undergo unitary evolution, which is by its very
nature reversible. Finally, in 1985, David Deutsch at Oxford University published
a paper containing a full theory of a quantum Turing machine, making explicit the
link between computational theory and quantum mechanics [3].

Deutsch showed that the theory of computation developed by Turing and others
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1 Introduction

is not free from physical assumptions. A classical Turing machine is assumed to be
in a definite state at the conclusion of each step of computation. But a quantum
mechanical system is subject to no such constraint; the result of each step of the
computation may be a superposition of computational states. Using this principle, a
quantum Turing machine may, in a sense that will be explained more fully in Section
4, explore all possible computational paths while performing only a single computa-
tion. It is this principle of quantum parallelism that gives quantum computers their
power. It is important to note at this point that a quantum Turing machine, and
therefore a quantum computer, is no more powerful than a classical Turing machine,
in the sense that there is no function that may be computed by one that may not
be by the other. It appears, however, that quantum Turing machines may be able
to compute some functions more efficiently than classical Turing machines.

The two most famous and useful quantum algorithms known are Shor’s factoring
algorithm and Grover’s database search algorithm. Shor’s algorithm can factor num-
bers faster than any known classical algorithm (though it has not yet been proved
that factoring is an inherently inefficient problem for a classical computer), while
Grover’s algorithm can speed up the search of an unstructured database by a factor
of a square root of the number of elements in the database over the best classical
algorithm. Both of these quantum algorithms, though especially Shor’s algorithm,
have important applications to cryptography. The most widespread cryptosystem
in use today is the RSA encryption scheme, which relies on the difficulty of fac-
toring large numbers for its security. A quantum computer could decode an RSA
encrypted message in seconds. Thus, research in quantum computation has also
spurred research in the related field of quantum cryptography, in which quantum
mechanical properties are used to create unbreakable codes.

Despite the obvious benefits of quantum computers, none yet exists. Many
physical realizations have been proposed, but none has yet produced large quantum
computers, even though the requirements for quantum computation seem minimal.
Any quantum system possessing two nondegenerate states can be used as a quan-
tum bit, or qubit, which is the basic unit of quantum information, just as the bit
is the basic unit of classical information. A quantum computer would consist of
many qubits and some mechanism for changing their state. Additionally, it must be
possible to entangle different qubits to create quantum registers; this notion will be
explained in a later section.

To date, only small quantum computers running a single algorithm have been
built, despite the simple requirements. Though no solution has yet been found that
will scale easily to large numbers of qubits, some implementations have been quite
successful on a small scale as proof-of-principle experiments. The most advanced of
these small quantum computers are based on nuclear magnetic resonance (NMR). In
an NMR quantum computer, nuclear spins are used as qubits, and radio frequency
waves are used to change the state of the qubits. A simpler implementation, dis-
cussed extensively in a later section of this paper, is based on linear optics, where
combinations of photon spatial modes and polarization states are used as qubits.
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Experiments have also been done using quantum dots, cavity QED systems, and
trapped ions, to name a few. The reader is directed to Nielsen and Chuang’s book
[1] for an overview of some of these implementations.

There are problems with each of these implementations, however, that have
stymied the progress towards a working universal quantum computer. These prob-
lems can be separated into implementation-specific issues and issues of general dif-
ficulty. The most problematic of these general difficulties is decoherence, or the
tendency of the delicate superpositions necessary for quantum computation to de-
cay due to interactions with their environment. Several schemes have been devel-
oped for dealing with this problem, most notably the theories of decoherence-free
subspaces and quantum error correcting codes. While these schemes do reduce the
adverse effects caused by decoherence, they also require extra qubits that will slow
the development of working quantum computers.

In this paper, we present an overview of the field of quantum computation, along
with a complete treatment of linear optical quantum computation as an example
of a possible experimental realization of the theory. Section 2 develops the theory
of quantum mechanics from the viewpoint of quantum computation and introduces
some useful ideas from the theory of computation. Section 3 gives an overview
of the quantum circuit model, and determines a set of quantum logic gates that is
universal for quantum computation. Section 4 discusses several quantum algorithms,
beginning with the relatively simple Deutsch and Deutsch-Jozsa algorithms and also
covering Grover’s and Shor’s algorithms. Finally, Section 5 provides a complete
description of a hypothetical quantum computer implemented using linear optics.
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2 Mathematical Tools

2 Mathematical Tools

2.1 Quantum Mechanics

The theory of quantum mechanics is built on top of the theory of linear algebra.
In order to describe the physical world, we must define some mapping between the
mathematical concepts and observable physical dynamics. This is accomplished by
defining a set of postulates. We can say that the postulates are valid if the resultant
theory agrees with experiment, and indeed the predictions of quantum mechanics
agree impeccably with observations.

In this section, we develop the theory of quantum mechanics from the viewpoint
of quantum computation. The following discussion is adapted from Boccio [4] and
Nielsen and Chuang [1].

2.1.1 States and Qubits

To begin with, we must define a framework within which to work; to that end, we
make the following postulate:

Postulate 1 A physical system is represented as a Hilbert space, and a state of the

system is given by a unit vector |ψ〉 in that space. In particular, a qubit is a unit

vector in a two dimensional Hilbert space.

A Hilbert space is simply a complex linear vector space with an inner product
defined. Thus it is clear that linear algebra will be the primary mathematical for-
malism used in our theory. In quantum computation, we are primarily interested in
qubits; thus we will be most interested in simple two-dimensional vector spaces.

Qubits are the quantum analog of classical bits. As two dimensional vectors,
they have two discrete states, which we label |0〉 and |1〉 . We also here define the
so-called standard computational basis, in which

|0〉 =

(
1
0

)

and |1〉 =

(
0
1

)

. (2.1)

We will often make use of this basis, and unless otherwise stated, it is the basis used
throughout this paper.

In addition to being in either of the basis states |0〉 or |1〉 , a qubit may exist in
any superposition of these states, given by

|ψ〉 = α |0〉 + β |1〉 , (2.2)

with
|α|2 + |β|2 = 1. (2.3)

The fact that qubits can be in definite superpositions is the root of the increased
computational power of quantum computers relative to classical computers.
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2.1 Quantum Mechanics

2.1.2 Operators and Evolution

Now that we have developed a mathematical representation of a physical system and
its states, we must specify how states evolve. We thus make our second postulate:

Postulate 2 Closed systems evolve via unitary transformations. Thus, quantum

logic gates, which change the state of qubits, are represented as unitary operators.

A unitary operator is one whose Hermitian conjugate is its inverse. Thus, if U
is a unitary operator,

U †U = UU † = I, (2.4)

where I is the identity operator. This allows us to state and prove a lemma con-
cerning the eigenvalues of a unitary operator that we shall use later in this paper:

Lemma 2.1 A unitary operator has eigenvalues of the form eiθ, and any operator

with eigenvalues of this form is unitary.

Proof To prove the first part of the lemma, consider the matrix representation
of a unitary operator in its eigenbasis. In this basis, it will be diagonal with its
eigenvalues υi down the diagonal, where the υi are in general complex. The product
U †U in this basis will then be a diagonal matrix with the values υ∗i υi down the
diagonal. To fulfill the unitary condition, we must have υ∗i υi = 1; thus, the real part
of the υi must be 1, and therefore the υi will be of the form eiθi . Examining the
product UU † gives the same result.

The second part of the lemma is proved in much the same way. We define
some operator Q with eigenvalues eiφi , and work in its eigenbasis. In this basis,
the product Q†Q has a matrix representation consisting of e−iφieiφi = 1 down the
diagonal, and thus is the identity matrix. The same result is obtained given the
product QQ†, and so Q fulfills the unitarity condition and the lemma is proved.

�

Notice that postulate 2 specifies only that closed systems undergo unitary evo-
lution. No specification is made for systems that are not closed; presumably, the
dynamics are far more complex. Many of the difficulties encountered in the effort to
construct a working quantum computer stem from the interactions of the computer
with its environment; quantum computers are only approximately closed systems. In
this paper, however, we consider only ideal, closed quantum computational systems,
and so are concerned only with purely unitary evolution.

Postulate 2 associates the class of unitary operators with state evolution. We
now associate a second class of operators with physical observables, which will lead
us to a representation of quantum measurement:

Postulate 3 A physical dynamical variable is represented by a Hermitian operator,

and the possible outcomes of a measurement of that observable are the eigenvalues

of the operator.
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2.1 Quantum Mechanics

A Hermitian operatorH is one that is equal to its Hermitian conjugate, satisfying
the relation H = H†. Just as the unitarity condition restricts the eigenvalues of a
unitary operator, the hermiticity condition imposes a restriction on the eigenvalues
of a Hermitian operator:

Lemma 2.2 The eigenvalues of a Hermitian operator are real.

Proof Consider a Hermitian operator H, and again consider its matrix representa-
tion in its eigenbasis, where it is diagonal with its eigenvalues ηi down the diagonal
and the ηi are in general complex. To satisfy the hermiticity condition, H = H †,
the relation η = η∗ must hold. Thus, the ηi must be real.

�

The condition proved in lemma 2.2 makes Hermitian operators a good choice to
model observables, since, of course, we can never measure a complex number.

As we show below, the eigenvectors of a Hermitian operator are orthogonal, a
fact we shall often use:

Theorem 2.1 The eigenvectors of a Hermitian operator corresponding to distinct

eigenvalues are orthogonal.

Proof Let Q be a Hermitian operator, and let |ψ〉 and |φ〉 be eigenvectors of Q
with eigenvalues ψ and φ, respectively, such that ψ 6= φ. The, we have

φ 〈ψ |φ〉 = 〈ψ |Q|φ〉 = (Q |ψ〉)† |φ〉 = (ψ |ψ〉)† |φ〉 = ψ 〈ψ |φ〉 , (2.5)

where the last equality follows from lemma 2.2. Therefore,

φ 〈ψ |φ〉 = ψ 〈ψ |φ〉 , (2.6)

and so 〈ψ |φ〉 = 0, which means that |ψ〉 and |φ〉 are orthogonal.

�

2.1.3 Composite States and Registers

So far in our discussion of quantum mechanics, we have dealt only with single
systems; from the standpoint of quantum computation, we have only discussed
single qubits. A quantum computer with the capacity to operate on only a single
qubit is useless, and so we must extend our discussion to systems of many qubits.
We therefore introduce the following postulate:

Postulate 4 The Hilbert space describing a composite physical system is the tensor

product of the spaces describing the individual systems, and the state vector of the

system is the tensor product of the individual state vectors. A quantum register is

the tensor product of individual qubits.
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2.1 Quantum Mechanics

The tensor product, denoted by the ⊗ operator, is associative and distributive.
In terms of matrices and vectors, the tensor product is reduced to the so-called
Kronecker product. The Kronecker product of an m × n matrix A and a p × q
matrix B is given by

A⊗B =

nq
︷ ︸︸ ︷







A11B A12B · · · A1nB
A21B A22B · · · A2nB

· · · · · · ... · · ·
Am1B Am2B · · · AmnB














mp. (2.7)

In equation (2.7), each entry is a submatrix of the dimensions of B, with each entry
in B multiplied by a component of A as shown. The Kronecker product of a vector
follows directly from equation (2.7) by simply setting n and q to 1. Let us illustrate
the tensor product with a simple example.

Consider the matrix

H =
1√
2

(
1 1
1 −1

)

. (2.8)

We will see in Section 3 that this operator is of fundamental importance in quantum
computation. Using the definition in equation (2.7), we now calculate H ⊗H:

H ⊗H =
1√
2

(
H H
H −H

)

. (2.9)

Expanding this out, we have

H ⊗H =
1

2







1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1






. (2.10)

In a similar way, we can define multiqubit states in terms of the tensor product.
Consider a simple quantum register consisting of a qubit in the |0〉 state and a qubit
in the |1〉 state. Using postulate 4, we can write this register as |0〉 ⊗ |1〉 . The
representation of this state in the computational basis is quickly given by equation
(2.7):

|0〉 ⊗ |1〉 =

(
1
0

)

⊗
(

0
1

)

=







0
1
0
0






. (2.11)

This process generalizes simply to larger quantum registers. We shall often use a
shorthand notation to describe such multiqubit states. We define |0〉 ⊗ |1〉 ≡ |01〉 .
Whenever we write a qubit with more than one label in the ket, a tensor product is
implied.
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2.2 The Theory of Computation

Before leaving this section, let us introduce one more piece of notation we will
use throughout this paper. Consider an operator Q that operates on a single qubit.
To extend this operation to a register of n qubits, we take its tensor product with
itself n times. We represent this operation by Q⊗n, in analogy with exponentiation.
We use the same notation for qubits; in our notation, the state |0〉⊗n represents a
quantum register n qubits long with every qubit in the |0〉 state.

2.2 The Theory of Computation

The theory of computation may broadly be divided into two sections: computability
and complexity. Computability theory has led to a knowledge of the kinds of prob-
lems that can and cannot be solved by a computing device. It is straightforward to
show that there must be functions that cannot be computed: the set of all possible
functions is uncountably infinite, while the set of all possible programs is countably
infinite, so that there are more functions than programs. But while computability
theory is a rich field and interesting in its own right, we will not consider it here. It
cannot shed any light on the difference between classical and quantum computers,
because the set of functions computable by each type of computer is identical.

The notion that quantum computers are more powerful than their classical coun-
terparts stems from another branch of the theory of computation, namely complexity
theory. Early in the development of the theory of computation, it was realized that
simply classifying functions as computable or not was too coarse grained, and not
useful for practical purposes; there are many useful computable functions that nev-
ertheless cannot be computed in a reasonable amount of time. Classifying functions
(and therefore the algorithms that implement them) by the exact amount of run-
ning time they required is too fine grained an approach, leading to needless extra
taxonomy. Complexity theory thus defines broad complexity classes, and states that
algorithms running in a time proportional to a polynomial in their input size are
feasible, and algorithms running in exponential time are infeasible.

We will clarify these notions in a moment; first, however, we take a detour to
discuss classical and quantum Turing machines, which are the basis for all of the
theory of computation.

2.2.1 Classical Turing Machines

While a computing device may be thought of as a function evaluator, it must also
be an information processor. Turing machines1 are defined from this perspective,
and build on the theory of formal languages. We define an alphabet Σ to be a finite
set of symbols (which may always be the set of binary numbers, {0, 1}). A string
is a finite sequence of symbols from Σ. Predictably, a language is defined to be a

1Though we refer to Turing “machines,” the reader should understand that a Turing machine

does not refer to a physical device, but rather to a mathematical object. Whenever we refer to

machines or devices in this section, we are referring simply to mathematical constructs.
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2.2 The Theory of Computation

set of strings over an alphabet. We also introduce the notion of an automaton or
language acceptor. An automaton is a device that is paired with a given language.
Suppose we have an automaton M and a language L. We now feed M with strings.
If M returns “true” for all strings that are in L and “false” for all strings not in L,
we say that M accepts L.

Formal languages fall into several different categories, and each class of languages
is paired with a corresponding class of automaton. A full discussion of the so-called
Chomsky hierarchy [5], which ranks the different classes of formal languages based
on their generality, is beyond the scope of this paper; we simply state that the most
general language classes are the recursive and recursively enumerable languages2,
both of which have Turing machines as their automata. Because Turing machines
are related to the most general formal languages, we regard them as a good model
of computation. Indeed, no alternate model of computation has yet been proposed
that cannot be proven to be equivalent to the Turing machine model.

A Turing machine may be thought of as consisting of three elements, as shown
in Figure 1. The first of these is an infinite tape marked off into segments. Each

· · · · · ·0 1 1 0 1 0 0 1 0

Read/Write Head

Control

Unit

Figure 1: A representation of a Turing machine.

segment may either contain some symbol or be blank. The Turing machine also has
a read/write head that can move along the length of the tape, reading in symbols
and possibly erasing or overwriting them. Finally, it has a finite control unit that
may be in some state. The action of the Turing machine will be determined by both

2The precise definitions of recursive and recursively enumerable languages are unimportant for

the present discussion. Formally, the recursive languages are the class of languages decided by a

Turing machine, while the recursively enumerable languages are those languages semidecided by a

Turing machine. A Turing machine is said to decide a language if it halts on all strings, and accepts

strings in the language and rejects strings not in the language. A Turing machine semidecides a

languages if it halts only on strings in the language and does not halt on other strings.
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2.2 The Theory of Computation

its state and the currently read symbol on the tape. It is important to note that at
the end of every computational step, the machine will be in a definite state.

Formally, then, a Turing machine M is a quintuple (K,Σ, δ, s,H), where K is a
finite set of states, Σ is an alphabet, s is the start state, H is the set of halting states,
and δ is a function from (K − H) × Σ to K × Σ, where × denotes the Cartesian
product. δ specifies the action of the Turing machine based on its current state and
the symbol it is currently reading. For the class of deterministic Turing machines, δ
is a true function, and must be single valued and must contain an entry for every pair
from K −H and Σ. For a nondeterministic Turing machine, the transition function
need only be a relation: it may be multiply valued, and need not contain entries
for all possible elements of (K − H) × Σ. We represent such a nondeterministic
transition function by ∆. A computation of a nondeterministic Turing machine
proceeds along all possible paths simultaneously; however, one must remember that
the nondeterministic Turing machine is simply a mathematical construct and cannot,
even in principle, be built.

Remarkably, although many alternate models of computing devices have been
proposed, none has ever been shown to be more powerful than a Turing machine.
Even augmenting the standard Turing machine described above with multiple tapes
or multiple read/write heads does not allow the computation of any new functions;
indeed, any computation on such an extended Turing machine may be efficiently
translated into a computation on a standard Turing machine. It should be men-
tioned, however, that it has not been proved that the action of a nondeterministic
Turing machine can be simulated efficiently on a standard deterministic Turing ma-
chine, and indeed most computer scientists believe that it cannot be. We will return
to this question in our discussion of computational complexity below.

2.2.2 Quantum Turing Machines

The theory of the quantum Turing machine was first published by Deutsch [3].
Deutsch’s quantum Turing machine is similar to a classical Turing machine in that
it consists of a finite control unit and an infinite tape. Instead of being able to record
only classical information, however, the tape is now capable of holding a qubit at
each location; that is, the tape is made up of an infinite sequence of two-level
observables. The control unit is likewise a quantum device, characterized by some
number of two-level observables. Deutsch also introduces a pointer to the current
position of the read/write head on the tape, characterized by yet another observable.
A state of the machine is given by a vector in the Hilbert space constructed from
the space of the head pointer, the tape slots, and the control unit.

As a quantum device, the quantum Turing machine evolves via unitary dynamics.
Deutsch specified that only a single tape square can participate in a given operational
step of the machine. This ensures that the machine will operate by finite means, a
requirement on any reasonable model of computation.

While the quantum Turing machine is running, it must not be observed; other-
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2.2 The Theory of Computation

wise, any superposition on the tape or in the control unit will be collapsed. This
requirement, however, makes it difficult to determine when the machine has halted.
Deutsch escaped this problem by specifying that the quantum Turing machine
should keep one extra qubit with which it can signal the halt condition. This qubit
may be periodically observed without disturbing the rest of the computation.

Though we will not refer back to the concept of the quantum Turing machine,
it is important to understand that it is a fully developed theoretical model that can
be proved to be as powerful as a classical Turing machine.

2.2.3 Computational Complexity

Computational complexity provides a framework for determining the efficiency of
algorithms. As discussed above, quantifying the exact running time of an algorithm
is often too fine-grained to be useful; we would like, however, some measure of the
running time. To this end, we define the order of a function f(n) as follows: we
say that f(n) is O(g(n)) if, for some constants c and n0, f(n) ≤ cg(n) for all n
greater than n0. This is often referred to as ‘big-O’ notation; we also refer to it as
the time complexity of an algorithm. We note that the time complexity defined in
this way specifies an upper bound on the running time; it is the running time of the
algorithm in its worst case. One can also define lower asymptotic bounds, but since
big-O notation is more standard, we use it.

We can now use this concept of time complexity to define what is meant by
an efficient algorithm. Algorithms whose time complexity is polynomial in their
argument size are deemed tractable and efficient. Algorithms with exponential time
complexities are deemed inefficient. Algorithms that fall into these two categories
are grouped together in large complexity classes. The class P is the set of all
polynomial time algorithms, while the class EXP is the set of all exponential time
algorithms. It should be clear that P ⊂ EXP. These classes can also be defined
in terms of Turing machines; for example, P is the set of algorithms that run in
polynomial time on a deterministic Turing machine.

The major outstanding problem in computer science today concerns a third com-
plexity class, the class NP. NP is generally defined to be the class of algorithms
that run in polynomial time on a nondeterministic Turing machine. NP may also be
defined to be the class of problems with solutions that may be checked in polynomial
time by a deterministic Turing machine. The most important unsolved question in
computer science is whether or not P = NP. It is widely believed that the two
classes are not equal, though proving this fact has turned out to be very difficult.
While important in its own right, proving P 6= NP also has implications for quan-
tum computation; though we do not give a proof here, such a proof could be used to
show that quantum computers are provably more efficient than classical computers.

The field of computational complexity is much broader than we can treat here.
The interested reader is directed to Lewis and Papadimitriou’s book [5] for more
information.
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3 Quantum Gates and Circuits

3 Quantum Gates and Circuits

3.1 Quantum Logic

A classical computer is, in essence, a device that processes classical information,
encoded in bits. While this high level description is good for dealing with a computer
as a mathematical entity, it is useful when considering a computer to be a physical
device to model a computer from a more physically motivated perspective. Classical
digital computers are built from logic gates and wires that are grouped together to
form more complex circuits. Data moves along the wires and is changed by the
logic gates in such a way as to implement the desired computation. Logic gates
themselves are defined by their action when fed with different input bits, usually
codified in a truth table.

Analogously, since a quantum computer is a processor of quantum information,
we define a quantum circuit to be a network of quantum logic gates and quantum
wires that act on qubits. To be consistent with the postulates of quantum mechanics
listed in Section 2, we define a quantum logic gate to be a unitary transformation
on one or more qubits. A quantum wire is simply a theoretical construct to denote
movement of qubits, either through space or time. In this way, our quantum circuit
model applies equally well to any implementation of a quantum computer.

In this section, we first present several single qubit gates, which are some of the
most important quantum gates. Next, we consider multi-qubit controlled opera-
tions, and important extensions. Finally, we consider a discrete set of gates that is
universal for quantum computation.

Before moving on to our discussion of single qubit gates, let us introduce some
notation. Figure 2 shows our representation of a quantum circuit. The lines

Q

|φ〉

|χ〉

|ψ〉

Figure 2: A generic quantum circuit. The lines represent quantum wires
while the box signifies a quantum gate Q. Information flows from left to
right.

represent quantum wires and the box signifies a quantum logic gate Q. Each wire
carries a single qubit, and we assume that all the qubits in a particular circuit are
a part of the same system, and that the state of the circuit at any time may be
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3.2 Single Qubit Gates

described by a tensor product of the individual qubits. Any quantum gate in the
circuit will act only on the qubits carried by the wires that pass through it; thus,
quantum gates will often act on subspaces of the Hilbert space of the full circuit.
Additionally, we define the direction of information flow in a quantum circuit to be
from left to right. Using these rules, the circuit in Figure 2 represents the operation

(I ⊗Q⊗ I)(|φ〉 ⊗ |χ〉 ⊗ |ψ〉) = |φ〉 ⊗Q |χ〉 ⊗ |ψ〉 . (3.1)

Note that we have here introduced the convention that when a tensor product of
operators acts on a tensor product of qubits, the first operator acts on the first
qubit, the second operator on the second qubit, and so on. Thus, in equation (3.1),
the operator Q acts only on the qubit |χ〉 , while the other two qubits are acted
upon by the identity operator.

3.2 Single Qubit Gates

The building blocks of any quantum circuit are operations on single qubits. In this
section, we introduce several single qubit gates that we will use frequently.

We begin with the well-known Pauli matricesX, Y , and Z. In the computational
basis, these gates have the matrix representations

X =

(
0 1
1 0

)

Y =

(
0 −i
i 0

)

Z =

(
1 0
0 −1

)

(3.2)

In addition to specifying their matrix forms, it is also instructive to express the
Pauli matrices in terms of projectors in the computational basis:

X = |0〉 〈1| + |1〉 〈0|
Y = i |0〉 〈1| − i |1〉 〈0|
Z = |0〉 〈0| − |1〉 〈1| (3.3)

Finally, we also specify the action of the Pauli matrices on the general qubit |ψ〉 =
α |0〉 + β |1〉 :

X |ψ〉 = α |1〉 + β |0〉
Y |ψ〉 = iα |1〉 − iβ |0〉
Z |ψ〉 = α |0〉 − β |1〉 (3.4)

The Pauli matrices have many interesting properties. Simply by inspecting their
matrix forms, it is easy to show that the Pauli matrices all square to the identity
matrix. Using this property, we can prove a useful identity. Consider exp(ixσ)
for some real number x and matrix σ such that σ2 = I. Then, expanding the
exponential, we have

eixσ =
∞∑

n=0

(ixσ)n

n!
. (3.5)
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3.2 Single Qubit Gates

Breaking this sum into its even and odd components, we have

eixσ =
∑

n even

(ixσ)n

n!
+
∑

m odd

(ixσ)m

m!
. (3.6)

We know that σ2 = I; thus, σ raised to any even power will be I and to any odd
power will be σ. Using this fact, the summations become

eixσ =
∑

n even

(i)nxn

n!
+
∑

m odd

(i)mxmσ

m!
. (3.7)

Now, we let n = 2k and m = 2`+ 1, so that we can rewrite the summations as

eixσ =
∞∑

k=0

(−1)kx2k

(2k)!
+ iσ

∞∑

`=0

(−1)`x2`+1

(2`+ 1)!
. (3.8)

But these are simply the expansions of the sine and the cosine; thus,

eixσ = cosx+ iσ sinx. (3.9)

We can now use this identity to define the following useful rotation operators
about the x, y, and z axes, given by

Rx(θ) ≡ eiθX/2 = cos
θ

2
− iX sin

θ

2
=

(
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

)

Ry(θ) ≡ eiθY/2 = cos
θ

2
− iY sin

θ

2
=

(
cos θ2 − sin θ

2

sin θ
2 cos θ2

)

Rz(θ) ≡ eiθZ/2 = cos
θ

2
− iZ sin

θ

2
=

(
e−iθ/2 0

0 eiθ/2

)

. (3.10)

Additionally, we can define a rotation operator about some arbitrary axis n as

Rn(θ) ≡ e−iθn̂·σ/2 = cos
θ

2
− i (nxX + nyY + nzZ) sin

θ

2
, (3.11)

where n̂ = (nx, ny, nz) is a unit vector in the n direction and σ = (X,Y, Z) is a
vector of the Pauli matrices. This general rotation follows because

(n̂ · σ)2 = I, (3.12)

and so equation (3.10) defines a rotation is accordance with our earlier findings for
operators that square to unity. To see why equation (3.12) holds, let us expand it
out:

(n̂ · σ)2 = (nxX + nyY + nzZ)2

= (n2
x + n2

y + n2
z)I + nxny {X,Y } + nxnz {X,Z} + nynz {Y, Z} (3.13)
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3.2 Single Qubit Gates

where {·, ·} denotes the anticommutator. It is becomes apparent simply by writing
it out that for any two Pauli matrices σi and σj ,

σiσj = iεijkσk, (3.14)

where we have invoked the Einstein summation convention and εijk is the Levi-
Civita totally antisymmetric tensor. This in turn shows that {σi, σj} = 0, or that
the Pauli matrices anticommute. This fact combined with the requirement that n̂
be a unit vector means that equation (3.13) reduces to the identity operator, so that
equation (3.11) holds.

The Pauli matrices are a basis for the space of two by two matrices, and as such,
any single qubit operator can be expressed in terms of them. We now make use of
this fact to prove a theorem that will be useful in our study of controlled operations.
First, we state a small lemma that will be necessary for proving the theorem:

Lemma 3.1 Suppose U is a single qubit quantum gate. Then there exist real num-

bers α, β, γ, and δ such that

U = eiαRz(β)Ry(γ)Rz(δ). (3.15)

Proof Since U is a single qubit gate, it must be unitary, as we have postulated
that all quantum dynamics are unitary. Since U is unitary, its rows and columns
must be orthonormal. Suppose we write U as

U =

(

ei(α−
β
2
− δ

2
) cos γ2 −ei(α−β

2
+ δ

2
) sin γ

2

ei(α+ β
2
− δ

2
) sin γ

2 ei(α+ β
2
+ δ

2
) cos γ2

)

(3.16)

for real numbers α, β, γ, and δ. We claim that this form of U ensures the orthonor-
mality of the rows and columns, and thus the unitarity of U . Labelling the columns
of U as uc1 and uc2 and the rows as ur1 and ur2, it is simple to see that

uc1 · uc2 = −ei(α−β
2
− δ

2
)ei(α−

β
2
+ δ

2
) cos

γ

2
sin

γ

2
+ ei(α+ β

2
− δ

2
)ei(α+ β

2
+ δ

2
) sin

γ

2
cos

γ

2

= −2 sin γei(2α+β) + 2 sin γei(2α+β)

= 0. (3.17)

Likewise, ur1 · ur2 = 0. Thus, writing U in this form ensures its unitarity, and then
equation (3.15) follows from matrix multiplication.

�

Now, we can state the theorem:

Theorem 3.1 Let U be a single qubit gate. Then there exist single qubit gates A,

B, and C such that ABC = I and U = eiαAXBXC, where α is an overall phase

factor.
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Proof Let us define

A ≡ Rz(β)Ry

(γ

2

)

B ≡ Ry

(

−γ
2

)

Rz

(

−δ + β

2

)

C ≡ Rz

(
δ − β

2

)

. (3.18)

Then we have

ABC = Rz(β)Ry

(γ

2

)

Ry

(

−γ
2

)

Rz

(

−δ + β

2

)

Rz

(
δ − β

2

)

= Rz(β)Rz(−β) = I. (3.19)

Now, note that, using equation (3.14),

XYX = iZX = i(iY ) = −Y. (3.20)

Therefore,

XRy(θ)X = X(cos θ + iY sin θ)X = cos θ − iY sin θ

= Ry(−θ), (3.21)

where we have used X2 = I. Similarly,

XRz(θ)X = Rz(−θ). (3.22)

With these identities in mind, we can show that

XBX = XRy

(

−γ
2

)

Rz

(

−δ + β

2

)

= XRy

(

−γ
2

)

XXRz

(

−δ + β

2

)

= Ry

(γ

2

)

Rz

(
δ + β

2

)

. (3.23)

Thus,

AXBXC = Rz(β)Ry

(γ

2

)

Ry

(γ

2

)

Rz

(
δ + β

2

)

Rz

(
δ − β

2

)

= Rz(β)Ry(γ)Rz(δ), (3.24)

and thus, by lemma 3.1, we have

U = eiαAXBXC. (3.25)
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�

Before leaving this section, we introduce three additional useful single qubit
gates: the Hadamard gate H, phase gate S, and π/8 gate T . These three gates have
matrix and projector representations given by

H =
1√
2

(
1 1
1 −1

)

=
1√
2
(|0〉 + |1〉) 〈0| +

1√
2
(|0〉 − |1〉) 〈1|

S =

(
1 0
0 i

)

= |0〉 〈0| + i |1〉 〈1|

T =

(
1 0

0 eiπ/4

)

= |0〉 〈0| + eiπ/4 |1〉 〈1| . (3.26)

Of these three gates, we shall use the Hadamard gate most frequently, and so let us
investigate it further. Consider its projector representation, and notice that

H |0〉 =
1√
2
(|0〉 + |1〉)

H |1〉 =
1√
2
(|0〉 − |1〉). (3.27)

The Hadamard gate thus takes either of the computational basis states and puts it
into a superposition state. Consider now a tensor product of two Hadamard gates
acting on the two qubit state |00〉 = |0〉 ⊗|0〉 . Explicitly calculating this operation,
we have

H⊗2 |0〉⊗2 =
1√
2
(|0〉 + |1〉)⊗ 1√

2
(|0〉 + |1〉) =

1

2
(|00〉 + |01〉 + |10〉 + |11〉). (3.28)

Thus, we see that this combination of two Hadamard gates acting on the |00〉 state
gives an even superposition of all the computational basis states for a two qubit
system. Let us now generalize this result.

Look again at equation (3.27). It is clear that for an arbitrary single qubit state
|φ〉 , we can write

H |φ〉 =
1∑

k=0

(−1)φk |k〉√
2

. (3.29)

Let us now generalize this to the case of n qubits. We have

H⊗n |φ1, φ2, . . . , φn〉 =
∑

k1,...,kn

(−1)φ1k1+φ2k2+...+φnkn |k1, k2, . . . , kn〉√
2n

, (3.30)

which we can summarize as

H⊗n |φ〉 =
∑

k

(−1)φ·k |k〉√
2n

. (3.31)
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Here, φ · k represent the bitwise inner product of φ and k; that is, the sum modulo
2 of the products of the individual digits of φ and k when both are written in
binary. Note also that we term such an n-fold tensor product of Hadamard gates
the Hadamard transform. Let us now consider the case where |φ〉 = |0〉⊗n. In that
case, φ · k = 0, and so

H⊗n |0〉⊗n =
∑

k

|k〉√
2n
, (3.32)

which is again an even superposition of computational basis states. We will often
make use of this result.

3.3 Controlled Operations

Now that we have discussed single qubit dynamics and have determined how to
construct any arbitrary single qubit gate using the Pauli matrices, let us move on to
multiqubit gates. The most important class of multiqubit gates, and as we shall see
the only class we need concern ourselves with, is the class of controlled operations.

A controlled operation is a single qubit operation performed on a target qubit
predicated on the values of one or more control qubits. The most important of
the controlled operations, and indeed also the simplest, is the control-not gate.
This gate flips the value of the target qubit if the control qubit is in the |1〉 state,
and it is the quantum analog of the classical xor gate (see Appendix A). In the
computational basis, the control-not gate is given by

CN =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







= |00〉 〈00| + |01〉 〈01| + |10〉 〈11| + |11〉 〈10| , (3.33)

where we have abbreviated the two-qubit tensor product states by using two labels
in the kets. Figure 3 shows the representation of both the control-not gate as well
as a general controlled-U gate.

We now show how to construct a general controlled operation. Recall from
theorem 3.1 that an arbitrary single qubit gate U can be written U = eiαAXBXC.
The first step in our construction is to perform a controlled phase shift by α; that
is, we want to rotate the phase of the target qubit if the control qubit is in the state
|1〉 . This two-qubit transformation is given by

CP = |00〉 〈00| + |01〉 〈01| + eiα |10〉 〈10| + eiα |11〉 〈11|

=







1 0 0 0
0 1 0 0
0 0 eiα 0
0 0 0 eiα






. (3.34)
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U
(a) (b)

Figure 3: (a) A control-not gate. The dark dot represents the control
qubit, while the open circle represents the target qubit. (b) A more general
controlled-U operation.

We note, however, that this transformation can be decomposed into two single qubit
operations, since

(
1 0
0 eiα

)

⊗ I =







1 0 0 0
0 1 0 0
0 0 eiα 0
0 0 0 eiα






. (3.35)

Here, the leftmost operator in the tensor product acts only on the control qubit and
the rightmost only on the target qubit. Thus, since target qubit is acted upon by
the identity in this transformation, the controlled phase shift can be replaced with a
single qubit transformation on the control qubit. Now, consider the circuit in Figure
4; we claim that this circuit implements a general controlled operation. To see why

A B C

(
1 0

0 eiα

)

Figure 4: A circuit implementing an arbitrary controlled U operation,
where U = eiαAXBXC.
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this should be, first notice that a control-not is exactly a controlled X operation,
which makes sense given that the X gate is the quantum analog of a classical not

gate, as is easy to show using the definition in equation (3.3):

X |0〉 = (|0〉 〈1| + |1〉 〈0|) |0〉 = |1〉
X |1〉 = (|0〉 〈1| + |1〉 〈0|) |1〉 = |0〉 . (3.36)

We now have two cases to consider: first, suppose the control qubit is in the
state |0〉 . In this case, the two control-not gates do not change the state of the
target qubit, and the transformation ABC is applied to the target qubit. But, as
part of theorem 3.1, ABC = I, and so if the control qubit is not set the state of the
target qubit does not change. Now, suppose the control qubit is in the state |1〉 .
In this case, the transformation eiαAXBXC is applied to the target qubit, which is
exactly U . The circuit in Figure 4 does indeed then implement a general controlled
U operation.

Finally, we introduce one more piece of notation before moving on. We have
thus far only considered controlled operations that perform some transformation if
a control qubit is in the |1〉 state. We can just as easily perform the transformation
if the control qubit is in the |0〉 state. We use an open circle to denote a control
of this type, as shown in Figure 5. We also note that since the X operator is

=
X X

Figure 5: A controlled operation conditioned on the control qubit being
in the |0〉 state and its implementation using a control-not gate.

the analog of a classical not gate, we may use it to map this new kind of control
operation into the type we have already discussed.

3.4 Universal Gate Sets

Now that we have discussed single and double qubit gates, we are ready to move on
to the subject of universal sets. A universal gate set is a finite set of logic gates that
can be used to implement any arbitrary circuit. As an example, the nand gate, an
and gate with its output inverted, is universal for classical computation. In this
section, we develop a quantum gate set that is universal for quantum computation.
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Ours will be an approximate universal set, but it can approximate any unitary
transformation to arbitrary accuracy. Following Nielsen and Chuang[1], we first
prove the universality of two-level unitary matrices and successively refine this set
until we have a discrete universal set.

3.4.1 Two-Level Unitary Matrices

Consider a quantum gate U that acts on n qubits. Letting d = 2n, this gate acts
on a d-dimensional Hilbert space, and so can be written in the computational basis
as a d × d matrix. We define a two-level unitary operation to be one that acts
nontrivially on only a single qubit. We claim that we can find two level unitary
matrices Ud−1 to U1 such that Ud−1Ud−2 . . . U2U1U = V1 is a matrix with a one as
the top left element and all zeros in the rest of the first row and column [6]. We
repeat this process so that

VkVk−1 . . . V1U = I, (3.37)

and so
U = V †

1 V
†
2 . . . V

†
k . (3.38)

Rather than prove this in general, we explicitly construct the 3 × 3 case. Even
though quantum gates can never have an odd number of rows and columns, the
3 × 3 case is simpler than the 4 × 4 case, and is the first nontrivial example of
the decomposition process we are demonstrating. Thus, while our example is not a
realistic one for quantum computation, it contains the same fundamental steps and
is easier to follow.

Consider the matrix

U =





a d g
b e h
c f j



 (3.39)

where the elements of U satisfy the unitarity condition and are in general complex.
We claim that we can write U3U2U1U = I for two level unitary matrices U3, U2, and
U1. Let us first consider U1. Our goal is to make the entry [U1U ]21 zero; if b = 0,
then, we can simply set U1 = I. Otherwise, let us choose a two level unitary matrix
of the following form:

U1 =





α β 0
γ δ 0
0 0 1



 . (3.40)
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Forming the product U1U , we get

U1U =





α β 0
γ δ 0
0 0 1









a d g
b e h
c f j





=





(αa+ βb) (αd+ βb) (αg + βh)
(γa+ δb) (γd+ δe) (γg + δh)

c f j





=





a′ d′ g′

b′ e′ h′

c′ f ′ j′



 . (3.41)

Now, we want b′ = γa+ δb = 0. Observe that we can accomplish this by setting

γ =
b

√

|a|2 + |b|2

δ =
−a

√

|a|2 + |b|2
. (3.42)

Since U1 must also be unitary, these choices for γ and δ force

β =
b∗

√

|a|2 + |b|2
. (3.43)

For reasons that will become clear shortly, we also choose to set

α =
a∗

√

|a|2 + |b|2
. (3.44)

Next, we consider U2U1U . We would like the lower left corner entry of this matrix
product to be zero. If it is already, we simply set

U2 =





a′∗ 0 0
0 1 0
0 0 1



 . (3.45)

If not, we choose a two level unitary matrix of the form

U2 =





α′ 0 β′

0 1 0
γ′ 0 δ′



 . (3.46)
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Multiplying the matrices out, we obtain, in much the same way as above,

α′ =
a′∗

√

|a′|2 + |c′|2

β′ =
c′∗

√

|a′|2 + |c′|2

γ′ =
c′

√

|a′|2 + |c′|2

δ′ =
−a′

√

|a′|2 + |c′|2
(3.47)

Thus, we obtain

U2U1U =





1 d′′ g′′

0 e′′ h′′

0 f ′′ j′′



 . (3.48)

Since all of U2, U1, and U are unitary, their product is as well. In order to fulfill the
unitarity condition, d′′ = g′′ = 0, so that

U2U1U =





1 0 0
0 e′′ h′′

0 f ′′ j′′



 . (3.49)

Note that our somewhat arbitrary choice of α and α′ above was contrived to give
us a one in the upper left hand corner of this product. Now, we need simply set

U3 =





1 0 0
0 e′′∗ h′′∗

0 f ′′∗ j′′∗



 (3.50)

and we will obtain, as desired, U3U2U1U = I, so that U = U †
1U

†
2U

†
3 . We have

therefore decomposed a general 3 × 3 unitary matrix into a product of two level
unitary matrices. In terms of the more general expressions in equations (3.37) and
(3.38), we have found that V1 = U2U1 and V2 = U3. Recall that V1 is a matrix
such that the product V1U has a one in the upper left entry and zeros in the rest
of the first row and column. Looking at equation (3.49), this is clearly the case.

With this choice of V2, we also have that U = V †
1 V

†
2 , as desired. This algorithm

clearly generalizes to higher dimensions. For example, in the 4× 4 case, the matrix
V1U would again have a one in the upper left entry and zeros in the rest of the first
row and column. Acting recursively, we would the find a matrix V2 such that the
non-trivial 3× 3 submatrix of V1U would take on the same structure in the product
V2V1U , and so on until we have fully decomposed the original matrix.
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3.4.2 Single Qubit and Control-NOT Gates

Now that we have shown that any arbitrary quantum gate can be implemented by
two level unitary matrices, we continue on towards a discrete universal gate set by
showing that an arbitrary two level unitary operation can be implemented using
only single qubit gates and the control-not gate.

Suppose U is a two level unitary operation. Let Ũ be the nontrivial 2 × 2
submatrix of U . We will prove that U can be implemented by single qubit gates
and the control-not gate by explicit construction. Let |s〉 and | t〉 be the two
computational basis states one which U acts nontrivially . Let us define |g1〉 =
|s〉 and |gm〉 = | t〉 . The states |g2〉 and |gm−1〉 are defined such that any two
consecutive states |gi〉 and |gi+1〉 differ only by one bit; in other words, the states
{|gi〉} form a Gray code from |s〉 to | t〉 . As an example of this, let us form a Gray
code from |0110〉 to |1000〉 . We have

|g1〉 = |0110〉
|g2〉 = |1110〉
|g3〉 = |1100〉
|g4〉 = |1000〉 (3.51)

The idea of our construction is this: begin with |g1〉 . By assumption, it differs
from |g2〉 by a single bit. We thus swap these two states by using a controlled bit
flip with its target being the bit where |g1〉 and |g2〉 differ. The bit flip will be
conditioned by the requirement that all the other bits of |g1〉 and |g2〉 must be the
same. We iterate this process until we have transformed |gm−2〉 into |gm−1〉 . At
this point, we performed a controlled Ũ operation with its target being the qubit
where |gm−1〉 and |gm〉 differ conditioned on all the other qubits being set. We then
proceed to undo all the swaps we have made.

As an example of this procedure, consider the three-qubit transformation

U =















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 a 0 0 0 0 b
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 c 0 0 0 0 d















, (3.52)

where

Ũ =

(
a b
c d

)

(3.53)

is an arbitrary unitary matrix. We note that U acts nontrivially on the basis states
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|010〉 and |111〉 , on which it has the action

U |010〉 = a |010〉 + c |111〉
U |111〉 = b |010〉 + d |111〉 . (3.54)

The Gray code states for this gate are given by

|g1〉 = |010〉
|g2〉 = |011〉
|g3〉 = |111〉 . (3.55)

Based on our procedure defined above, the circuit implementing U is shown in
Figure 6. Consider the action of this circuit on a register in the state |010〉 , so

Ũ

Figure 6: A circuit implementing the three-qubit gate U . Each of the
three controlled operations is conditioned on two control qubits.

that the top wire in Figure 6 carries a qubit in the |0〉 state, the middle wire a |1〉 ,
and the bottom wire a |0〉 . The first operation is a control-not gate conditioned
on the top qubit being a |0〉 and the middle qubit being a |1〉 . Since both the top
and middle qubits do in fact have these values, we invert the state of the bottom
qubit, leaving us in the state |011〉 .

The second gate in Figure 6 is a controlled Ũ operation on the top qubit, condi-
tioned on the both middle and bottom qubits being |1〉 . Since both are in the |1〉 ,
state, the Ũ operation is applied to the top qubit, so that after two operations we
are in the state a |011〉 + c |111〉 .

Finally, the third operation is another control-not gate with the same condition-
ing as before. Thus, we finally obtain the state a |010〉 + c |111〉 , which is exactly
what we found before in equation (3.54).

A similar line of reasoning can be used to find the action of the circuit in Figure
6 on the state |111〉 :

|111〉 → |111〉 → b |011〉 + d |111〉 → b |010〉 + d |111〉 . (3.56)
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Likewise, it is straightforward to show that any other state passes through this
circuit unchanged. Thus, the circuit in Figure 6 reproduces the operation of U .

We have now shown how to implement an arbitrary two level unitary gate using
only controlled operations. Recall, though, that in Section 3.3, we showed that an
arbitrary controlled operation may be implemented using only single qubit gates
and the control-not gate; thus, we have now proved these gates to be universal.

3.4.3 A Discrete Universal Set

We are now finally in a position to provide a discrete set of quantum gates that is
universal for quantum computation. Our set will consist of the control-not gate,
the Hadamard gate H, and the π/8 gate T . It is also common to include the phase
gate in this set since its inclusion is natural when considering fault-tolerant gate
constructions; however, since the phase gate S is simply T 2, we do not include it
here.

Our set of gates will be an approximate universal set. Since the space of all
unitary transformations is continuous, we obviously cannot truly construct it with
a finite number of transformations. However, we will see that our universal set can
approximate any unitary transformation to arbitrary accuracy.

Consider the T gate and the combination HTH. From the definition of the
rotation operators in equation (3.10), it is clear that the T gate is, up to a phase
factor, a rotation by π/4 radians about the z axis. Similarly, HTH is a rotation by
π/4 radians about the x axis, up to a phase, as shown below:

HTH =
1

2

(
1 1
1 −1

)(
1 0

0 eiπ/4

)(
1 1
1 −1

)

=
1

2

(
(1 + eiπ/4) (1 − eiπ/4)

(1 − eiπ/4) (1 + eiπ/4)

)

(3.57)

Since

1 + eiπ/4 = 1 + cos
π

4
+ i sin

π

4
= 2 cos2

π

8
+ 2i sin

π

8
cos

π

8

= 2eiπ/8 cos
π

8
(3.58)

and

1 − eiπ/4 = 1 − cos
π

4
− i sin

π

4
= 2 sin2 π

8
− 2i sin

π

8
cos

π

8

= −2ieiπ/8 sin
π

8
, (3.59)

we have

HTH = eiπ/8
(

cos π8 −i sin π
8

−i sin π
8 cos π8

)

= Rx

(π

4

)

. (3.60)
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Now, let us consider the composition of these two rotations:

e−iπZ/8e−iπX/8 =
(

cos
π

8
− iZ sin

π

8

)(

cos
π

8
− iX sin

π

8

)

= cos2
π

8
− i
[

(X + Z) cos
π

8
+ Y sin

π

8

]

sin
π

8
. (3.61)

Comparison with equation (3.11) shows that this is a rotation about the axis n̂ =
(cos π8 , sin

π
8 , cos

π
8 ) through an angle φ defined by cos φ2 = cos2 π

8 . Though we do
not present the proof, this φ can be shown to be an irrational multiple of 2π [7].

We would like to be able to represent a rotation through any angle θ by repeated
application of Rn(φ). We note that since φ is an irrational multiple of 2π, φ = 2λπ
where λ is irrational. For any arbitrary θ, there is an integer k such that

eikπλ ≈ eiθ, (3.62)

since phase factors are defined modulo 2π. Thus, Rn(φ) can be used to approximate
a rotation of any angle. Now, consider the product HRn(φ)H. Using the fact that
H = 1√

2
(X + Z) and that H is Hermitian as well as unitary, we have

HRn(φ)H = cos2
π

8
− i
[

(X + Z) cos
π

8
+HYH sin

π

8

]

sin
π

8
. (3.63)

Since

HYH =
1

2
(X + Z)Y (X + Z) =

1

2
(X + Z)(−iZ + iX)

=
1

2
(−Y − Y ) = −Y, (3.64)

we have
HRn(φ)H = cos2

π

8
− i
[

(X + Z) cos
π

8
− Y sin

π

8

]

sin
π

8
, (3.65)

which is a rotation about the m̂ = (cos π8 ,− sin π
8 , cos

π
8 ) axis, where m̂ and n̂ are not

parallel. Up to a phase shift, any single qubit gate can be represented as a product of
rotations about two nonparallel axes, and so any single qubit gate can be represented
by an appropriate product of Rn(θ) and Rm(θ). Since we can approximate these two
general rotations using only the Hadamard and π/8 gates, we need only H and T to
implement any arbitrary single qubit gate. With the results of the previous sections
in mind, then, we have constructed a universal set of gates. Any quantum circuit
can be approximated to arbitrary accuracy by the Hadamard, π/8, and control-not

gates.

29



4 Quantum Algorithms

4 Quantum Algorithms

4.1 Introduction

The power of quantum computation becomes most evident in the study of quantum
algorithms. Strictly speaking, a quantum computer is no more powerful than a
classical computer; there is no function computable by a quantum computer that
is not also computable by a classical computer. There are, however, tasks which
a quantum computer can perform significantly faster than a classical computer is
thought to be able to, using what is known as quantum parallelism.

The idea behind quantum parallelism is simple. Since a register of n qubits
can be prepared in a superposition of all its basis states, and can therefore represent
simultaneously all numbers between 0 and 2n−1, any unitary transformation acting
on this register must transform every one of these basis states with a single operation.
After a single application of the unitary transformation, the quantum register is left
in a superposition of all possible answers. This seems too good to be true, and in
many ways it is; a measurement of the register must, of course, yield only a single
result, and in the process destroys the superposition. This collapse would seem
to argue that nothing has been gained over a classical computation of the same
function. The known quantum algorithms, however, cleverly take advantage of the
fact that the amplitudes of the superposition of the result register may be adjusted
using quantum interference in order to produce their remarkable results.

The general pattern for quantum algorithms is thus clear: first, a quantum
register is prepared in an even superposition, in which every state has the same
coefficient, of its basis states. Next, some function is evaluated on this superposition
using a unitary transformation. Finally, the register is interfered by means of a
Fourier or Hadamard transform, and is then measured to obtain a result.

In this section, we present the major known quantum algorithms. Deutsch’s
algorithm and its extension, the Deutsch-Jozsa, algorithm have no known applica-
tions but are useful as introductions to the more complicated quantum algorithms.
Grover’s search algorithm speeds up the search of an unstructured database of N
elements by a factor of

√
N over a classical search, and has many applications.

Finally, Shor’s factoring algorithm, an application of the more general quantum
order-finding algorithm, can determine the prime factors of a composite number
much faster than the best known classical algorithm, and has important ramifica-
tions for cryptography.

4.2 Deutsch’s Algorithm

Deutsch’s problem, first proposed and solved in Deutsch’s seminal paper [3], was the
first example of a problem that could be solved faster on a quantum computer than
on a classical computer. While it has no known applications, both Deutsch’s algo-
rithm and the Deutsch-Jozsa algorithm are important from a historical standpoint,
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4.2 Deutsch’s Algorithm

and as simple introductions to quantum algorithms. Here, we present a simplified
version of the algorithm presented in Cleve et al. [8] and Nielsen and Chuang [1].

Deutsch’s problem supposes the existence of a black box that evaluates some
function f : {0, 1} 7→ {0, 1}. There are four such functions: two constant functions,

f(0) = f(1) = 0 and f(0) = f(1) = 1, (4.1)

and two so-called balanced functions,

f(0) = 0, f(1) = 1 and f(0) = 1, f(1) = 0. (4.2)

We would like to determine which of these two categories of functions a given black
box falls into. Classically, the only way to tell would be to evaluate both f(0)
and f(1); even though we are not asking for the values explicitly, both evaluations
are necessary to determine the global function property. A quantum computer,
however, can determine this global property with only a single function evaluation,
using Deutsch’s algorithm. A quantum network depiction of Deutsch’s algorithm is
shown in Figure 7.

H

H

H|0〉

|1〉

Uf

x

y

x

y ⊕ f(x)

Figure 7: A quantum circuit to implement Deutsch’s algorithm.

As shown in the figure, we begin with a two-qubit register initialized to the state
|01〉 . Each of these qubits is passed through a Hadamard gate, putting the register
into the state

|ψ〉 =

( |0〉 + |1〉√
2

)( |0〉 − |1〉√
2

)

. (4.3)

Next, we must evaluate the function f . This evaluation is accomplished by means
of the Uf operator, which some have called an f -control-not gate. This two-qubit
gate inverts the second of its input qubits only if the value of f evaluated on its first
input qubit is 1; thus, it performs the transformation

|x〉 |y〉 Uf−−→ |x〉 |y ⊕ f(x)〉 , (4.4)
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where ⊕ denotes addition modulo 2.3 We also note that

Uf

[

|x〉
( |0〉 − |1〉√

2

)]

=
1√
2
|x〉 [|0 ⊕ f(x)〉 − |1 ⊕ f(x)〉 ]

=







|x〉
(
|0〉−|1〉√

2

)

, f(x) = 0

|x〉
(
|1〉−|0〉√

2

)

, f(x) = 1

= (−1)f(x) |x〉
( |0〉 − |1〉√

2

)

. (4.5)

After passing through the Uf gate, then, the circuit is in the state

Uf |ψ〉 = (−1)f(x)

( |0〉 + |1〉√
2

)( |0〉 − |1〉√
2

)

=







(
|0〉+|1〉√

2

)(
|0〉−|1〉√

2

)

, f(0) = f(1) = 0
(
|0〉−|1〉√

2

)(
|0〉−|1〉√

2

)

, f(0) = 0, f(1) = 1

−
(
|0〉+|1〉√

2

)(
|0〉−|1〉√

2

)

, f(0) = f(1) = 1

−
(
|0〉−|1〉√

2

)(
|0〉−|1〉√

2

)

, f(0) = 1, f(1) = 1

, (4.6)

which can be more concisely summarized as

Uf |ψ〉 =







±
(
|0〉+|1〉√

2

)(
|0〉−|1〉√

2

)

, f(0) = f(1)

±
(
|0〉−|1〉√

2

)(
|0〉−|1〉√

2

)

, f(0) 6= f(1)
. (4.7)

Now, the first qubit is passed through another Hadamard gate, which produces the
state 





± |0〉
(
|0〉−|1〉√

2

)

, f(0) = f(1)

± |1〉
(
|0〉−|1〉√

2

)

, f(0) 6= f(1)
. (4.8)

Now, noting that

f(0) ⊕ f(1) =

{
0, f(0) = f(1)
1, f(0) 6= f(1)

, (4.9)

we can rewrite the final state of the circuit as

|ψout〉 = ± |f(0) ⊕ f(1)〉
( |0〉 − |1〉√

2

)

. (4.10)

3Addition modulo 2 produces the following results:

|0 ⊕ 0〉 = |0〉 |0 ⊕ 1〉 = |1〉

|1 ⊕ 0〉 = |1〉 |1 ⊕ 1〉 = |0〉
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Thus, a measurement of the first qubit will give the value of f(0)⊕f(1); if this value
is 0, f is constant, and otherwise is balanced. Thus, with only a single evaluation,
we have determined a global property of f .

Deutsch’s algorithm, while giving a 50% speedup over the fastest classical al-
gorithm for the same task, is not a particularly stunning result. It contains the
seeds,however, from which the other known quantum algorithms grow. Deutsch’s
algorithm first throws its quantum register into an even superposition and then pro-
ceeds to evaluate a function and interfere the outcomes to obtain its final result. We
will see this pattern again in each of the other algorithms presented in this section.
Next, we present the n-qubit extension of Deutsch’s algorithm, which, while similar
to Deutsch’s algorithm, has a more impressive result.

4.3 The Deutsch-Jozsa Algorithm

The Deutsch-Jozsa algorithm is the n-qubit generalization of Deutsch’s algorithm,
first published in a paper by Deutsch and Jozsa in 1992 [9]. Again, we present here
an improved version of the algorithm from Cleve et al. [8] and Nielsen and Chuang
[1].

Suppose we have a function f , now defined such that f : {0, 1}n 7→ {0, 1} for even
n, that is guaranteed to be either constant or balanced4. Our goal is to determine
with certainty which category f falls into. Classically, this would require, in the
worst case, 2n−1 + 1 evaluations of f , since we could get 2n−1 0’s before finally
getting a 1. Quantum mechanically, however, this global property of f can once
again be determined with only a single evaluation of f .

The algorithm proceeds much as Deutsch’s algorithm did; a quantum circuit
diagram for the algorithm is shown in Figure 8. As before, the input state of
|0〉⊗n |1〉 is first sent through a Hadamard transform. As we have shown before in
equation (3.32), a Hadamard transform on a quantum register in the |0〉⊗n state
produces an even superposition of all the basis states of the register, so after the
application of the Hadamard transform we have the state

|ψ〉 =

2n−1∑

x=0

|x〉√
2n

( |0〉 − |1〉√
2

)

, (4.11)

where we have acted with the Hadamard transform on the |1〉 qubit as well. Now,
once again, we use the Uf operator to evaluate the function f , which gives

Uf |ψ〉 =
2n−1∑

x=0

(−1)f(x) |x〉√
2n

( |0〉 − |1〉√
2

)

, (4.12)

4A constant n-qubit function is one that gives the same result for any input, and a balanced

n-qubit function is one that returns one result for exactly half of its inputs and a second result for

the other half of its inputs.
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n
H⊗n

H

H⊗n|0〉

|1〉

Uf

x

y

x

y ⊕ f(x)

Figure 8: A quantum circuit to implement the Deutsch-Jozsa algorithm.
The wire with a / represents an n-qubit bus and is a shorthand notation
for n wires.

as we showed before. The result of the evaluation of f on every argument from 0
to 2n − 1 is now stored in the first register. A direct measurement of this register
would, of course, produce only a single result. However, by interfering the qubits,
we may determine the global property of f we desire. To that end, we perform a
second Hadamard transform on the first register. Recall from equation (3.31) that
the Hadamard transform on some register |φ〉 in general produces the state

H⊗n |φ〉 =
∑

k

(−1)φ·k |k〉√
2n

. (4.13)

Using this, we can write the state of our circuit after the second Hadamard transform
as

∑

k

∑

x

(−1)x·k⊕f(x) |k〉
2n

( |0〉 − |1〉√
2

)

. (4.14)

Now, we measure the first register. It turns out that if k = 0, we know with certainty
that f is constant; if k 6= 0, then f is balanced. To see why this is true, consider
equation (4.12). If f is constant for all values of its argument, this equation can be
rewritten as

Uf |ψ〉 = ±H⊗n |0〉⊗n
( |0〉 − |1〉√

2

)

. (4.15)

Since the Hadamard transform is Hermitian as well as unitary (it being both sym-
metric and real), the second Hadamard transform on this state produces

|0〉⊗n
( |0〉 − |1〉√

2

)

. (4.16)

Thus, when every qubit in the first register is 0, f is constant. If f is balanced, we
cannot make the simplification in equation (4.15), and at least one qubit in the first
register will be nonzero.

34



4.4 Grover’s Algorithm

Amazingly, then, we have achieved an exponential speedup over the best classical
algorithm for solving this problem, reducing the worst case number of function
evaluations from 2n−1 + 1 to a single evaluation.

4.4 Grover’s Algorithm

Now that we have seen some examples of simple quantum algorithms, we move on
to an algorithm with practical application. Suppose we have an n qubit database of
unsorted data, and we wish to find elements that match a certain criterion. Since
we are assuming that there is no structure to this database, the best we can do
classically is simply to search through the entire database until we come across the
element we seek. For an N = 2n element database, this will require O(N) queries
to the database. However, the quantum algorithm due to Grover can speed up the
search for this “needle in a haystack” [10], allowing us to find the desired element in
only O(

√
N) steps. We begin by presenting the algorithm itself, and follow with a

discussion of why the algorithm works. Finally, we present an alternate generalized
form of the algorithm.

4.4.1 Procedure

As with the Deutsch-Jozsa algorithm, Grover’s algorithm begins by applying a
Hadamard transform to the |0〉⊗n state, giving us the familiar even superposition

H⊗n |0〉⊗n =
1√
2n

2n−1∑

x=0

|x〉 . (4.17)

We next apply several instances of the so-called Grover operator G.
The first part of the Grover operator is a black box known as an oracle that can

recognize the desired elements of our database.5This oracle O marks such states by
giving them local phase shifts of π radians; the internal workings of the oracle are
not specified by the algorithm. We can write the action of the oracle as

O |x〉 = (−1)δxτ |x〉 , (4.18)

where |τ〉 represents a solution of the search problem. We also note that

O = I − 2 |τ〉 〈τ | (4.19)

5It may seem as if the existence of an oracle that knows that answer to the search problem

obviates the need for the rest of the search algorithm. There are instances, however, where it is

possible to recognize the solution of a search problem without knowing the solution, especially when

using quantum parallelism. Consider what happens when the oracle operates on a quantum register

and one of the states in the register is the target state of search problem. The oracle will mark this

state, but without the rest of the search algorithm, there is no way to tell which state has been

marked since all the basis states of the register are entangled. In this case, even though the oracle

can recognize the solution, it cannot be used to find the solution by itself.
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since

(I − 2 |τ〉 〈τ |) |x〉 = |x〉 − 2 |τ〉 〈τ |x〉 = |x〉 − 2δxτ |τ〉

=

{
|τ〉 − 2 |τ〉 = − |τ〉 , x = τ
|τ〉 , x 6= τ

= (−1)δxτ |x〉 . (4.20)

The next part of the Grover operator is a Hadamard transform H⊗n. We then give
every element of the database except for the |0〉 element a π phase shift. Just as
we can write the action of the oracle as in equation (4.19), we can write this step as
an application of the operator

2 |0〉 〈0| − I, (4.21)

where the signs of the two halves of the operator are reversed since we are shifting
the phase of every element except the 0th element; that is, we are performing the
transformation |x〉 → −(−1)δx0 |x〉 . Finally, the Grover operator contains a second
Hadamard transform. The full Grover operator thus can be written

G = H⊗n(2 |0〉 〈0| − I)H⊗nO. (4.22)

In the next section, we discuss exactly what the operator does; we also calculate
how many times it must be applied.

After applying the Grover operator, all we must do to complete the algorithm
is measure the register; with an arbitrarily high probability, the measured state will
be one of the desired target states.

4.4.2 Inversion about the Mean

The question remains as to what the Grover iteration actually does, and why it per-
forms a database search. Consider that the essential operation of Grover’s algorithm
is to take some initial state |γ〉 and transform it into some target state |τ〉 . For the
algorithm to work, then, repeated applications of the Grover operator must change
the one vector into the other. Let us define a two dimensional space spanned by
vectors |α〉 and |β〉 where |β〉 is an even superposition of the solutions to our search
problem and |α〉 is an even superposition of the nonsolutions; let us furthermore
suppose that there are N states in our database and M solutions. Normalizing these
two vectors, we have

|α〉 =
1√

N −M

∑

nonsolutions

|x〉 (4.23)

and

|β〉 =
1√
M

∑

solutions

|x〉 . (4.24)
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We can reexpress the initial even superposition in terms of these new vectors (for
convenience, we make the definition |ψ〉 = 1√

N

∑

x |x〉). Since

|ψ〉 =
1√
N

(
∑

nonsolutions

|x〉 +
∑

solutions

|x〉
)

, (4.25)

we have

|ψ〉 =
1√
N

(√
N −M |α〉 +

√
M |β〉

)

=

√

N −M

N
|α〉 +

√

M

N
|β〉 . (4.26)

Now we can see what the Grover operator does to the vector |ψ〉 in this space.
The first part of the Grover operator is an application of the oracle. Recall that the
oracle gives a π phase shift to all solutions of the search problem; thus, by definition,

O |ψ〉 = O

(√

N −M

N
|α〉 +

√

M

N
|β〉
)

=

√

N −M

N
|α〉 −

√

M

N
|β〉 . (4.27)

This amounts to a reflection of |ψ〉 about the |α〉 -axis. The other part of the
Grover operator, H⊗n(2 |0〉 〈0| − I)H⊗n, can be rewritten in our current notation
as 2 |ψ〉 〈ψ| −I. Comparing this form to the form of the oracle in equation (4.19), we
can see that this second part of the Grover operator is also a reflection in the plane
defined by |α〉 and |β〉 , this time about the original vector |ψ〉 . This operation
is often called inversion about the mean; consider its action on a general state
∑

k αk |k〉 :

(2 |ψ〉 〈ψ| − I)

(
∑

k

αk |k〉
)

=
∑

k

[2αk |ψ〉 〈ψ| k〉 − αk |k〉 ]

=
∑

k




2αk
N

∑

i

∑

j

| i〉 〈j| k〉 − αk |k〉





=
∑

k




2αk
N

∑

i

∑

j

δjk | i〉 − αk |k〉





=
∑

k

[

2αk
N

∑

i

| i〉
]

−
∑

k

[αk |k〉 ] . (4.28)

We now swap the summations and define the average value of α to be 〈α〉 ≡
∑

k αk/N to obtain

∑

i

[
∑

k

2αk
N

]

| i〉 −
∑

k

αk |k〉 =
∑

i

2〈α〉 | i〉 −
∑

k

αk |k〉 . (4.29)
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Finally, we relabel the dummy index i by k, obtaining a final state of

∑

k

[−αk + 2〈α〉] |k〉 . (4.30)

The two halves of the Grover operator thus each perform a reflection in the same
plane, and since the product of two reflections is a rotation, the Grover operator
effectively rotates the starting state towards the vector of solutions, as is shown in
Figure 9. Continued applications of the Grover operator rotate the state closer and

|α〉

|β〉

|ψ〉

O |ψ〉

G |ψ〉

θ/2

θ/2

θ

Figure 9: The action of a single application of the Grover operator on the
state |ψ〉 .

closer to the solution vector, while remaining in the same space. So how many times
must we apply the Grover operator to have a good chance of finding a solution?

Let us make the definition that

cos
θ

2
≡
√

N −M

N
. (4.31)

This defines the triangle in Figure 10, such that

sin
θ

2
=

√

M

N
. (4.32)

We can therefore reexpress |ψ〉 as

|ψ〉 = cos
θ

2
|α〉 + sin

θ

2
|β〉 . (4.33)
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θ/2√
N −M

√
M

√
N

Figure 10: The triangle defined by equation (4.31).

Now, as can be seen from Figure 9, the Grover operator rotates |ψ〉 by exactly θ
radians; the oracle’s reflection effectively rotates the state by −θ radians and the
subsequent reflection about |ψ〉 rotates the state by 2θ radians.

We can now quantify the number of times we must apply the Grover operator
to our system to rotate |ψ〉 close to |β〉 . Consider again equation (4.26); our goal
is to rotate this state close to the vector |β〉 . We now show that rotating through
an angle φ = Cos-1

√

M/N will take |ψ〉 to |β〉 .
First, we note that φ is the complement of θ/2. Thus, we can easily write down

a rotation operator in the {|α〉 , |β〉} basis. We have

UR =

(
cosφ − sinφ
sinφ cosφ

)

=





√
M
N −

√
N−M
N√

N−M
N

√
M
N



 . (4.34)

We now operate on |ψ〉 , which in this basis is

|ψ〉 =





√
N−M
N√
M
N



 (4.35)

to obtain

UR |ψ〉 =

( √
M
N

√
N−M
N −

√
M
N

√
N−M
N(

N−M
N

)
+ M

N

)

=

(
0
1

)

= |β〉 , (4.36)

as claimed.
Since every application of the Grover operator rotates |ψ〉 through θ radians,

we must apply it

R =
Cos-1

√
M
N

θ
(4.37)

times to rotate |ψ〉 to |β〉 . In actuality, we require R to be an integer, and so R
is actually the integer closest to the value in equation (4.37). We now simplify this
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rather unwieldy expression by noting that, since the maximum value of Cos-1 is π/2,
the upper bound on R is

R ≤
⌈ π

2θ

⌉

. (4.38)

For M ≤ N/2 (we will explain this restriction shortly), we have, using equation
(4.32),

θ

2
≥ sin

θ

2
=

√

M

N
(4.39)

so that θ ≥ 2
√

M/N and

R ≤
⌈

π

4

√

N

M

⌉

. (4.40)

Thus, as stated earlier, Grover’s algorithm will run in O(
√
N) time.

Now, to see why the above expression was limited to the case of M ≤ N/2, we
derive an expression for sin θ. First, let us apply a half-angle identity to equation
(4.32), giving us

sin
θ

2
=

√

1 − cos θ

2
=

√

M

N
. (4.41)

Simplifying, this equation describes a triangle such that

cos θ =
N − 2M

N
. (4.42)

Using this triangle, we have

sin θ =
2
√

M(N −M)

N
. (4.43)

Examining this expression, we can see that asM increases fromN/2 toN , θ becomes
smaller, and thus R increases. Thus we have the strange behavior that Grover’s
algorithm performs worse for databases where more than half of the elements are
solutions. Odd as this behavior is, we may escape from it simply by adding another
N nonsolutions to our database. In this case, there will definitely be more than twice
as many nonsolutions as solutions, and Grover’s algorithm will perform optimally,
with the same complexity as derived above.

4.4.3 An Alternate Approach

The above discussion of Grover’s algorithm seems intimately connected with the
properties of the Hadamard transform, as it appears twice in the Grover operator
which is the heart of the algorithm. Grover, however, also published a second, more
general version of his algorithm that shows that almost any unitary operator may
be used to search a quantum database [11].
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Recall that the goal of Grover’s algorithm is to take some initial state |γ〉 to a
target state |τ〉 . We have shown how the Grover operator G is able to perform this
operation, using the Hadamard transform. Now consider an operator Q, defined as

Q = −IγU †IτU, (4.44)

where
Iφ = I − 2 |φ〉 〈φ| (4.45)

and U is some arbitrary unitary transformation. We now operate with Q on |γ〉 :

Q |γ〉 = −IγU †IτU |γ〉
= (2 |γ〉 〈γ| − I)U † (I − 2 |τ〉 〈τ |)U |γ〉
=
[

2 |γ〉 〈γ| − 4 |γ〉 〈γ| U † |τ〉 〈τ | U − I + 2U † |τ〉 〈τ | U
]

|γ〉 . (4.46)

Defining
Uτγ = 〈τ |U | γ〉 , (4.47)

we have
Q |γ〉 =

(

1 − 4 |Uτγ |2
)

|γ〉 + 2Uτγ

(

U † |τ〉
)

. (4.48)

This result suggests that we examine Q in the
{
|γ〉 , U † |τ〉

}
basis. To that end, let

us calculate Q
(
U † |τ〉

)
:

Q
(

U † |τ〉
)

=
(

−IγU †IτU
)(

U † |τ〉
)

= (2 |γ〉 〈γ|)U † (I − 2 |τ〉 〈τ |)UU † |τ〉
=
[

2 |γ〉 〈γ| U † − 4 |γ〉 〈γ| U † |τ〉 〈τ | − U † + 2U † |τ〉 〈τ |
]

|τ〉

=
(

U † |τ〉
)

− 2U∗
τγ |γ〉 . (4.49)

Thus, we see that Q preserves the space spanned by
{
|ψ〉 , U † |τ〉

}
, and we can

write it in this basis as

Q

(
|γ〉

U † |τ〉

)

=

(
1 − 4 |Uτγ |2 2Uτγ

−2U∗
τγ 1

)(
|γ〉

U † |τ〉

)

. (4.50)

Now, we know that |Uτγ |2, being a normalized probability, is less than one. Assum-
ing that both it and its associated amplitudes Uτγ and U∗

τγ are small, we can view

Q as a rotation of roughly 2 |Uτγ | in this space, from |γ〉 to U † |τ〉 . Thus, using
similar logic as above, Q can also search a database, using any convenient unitary
transformation.

So how many times must we apply Q to attain a high probability of finding a
solution? In any situation of interest, we know that |γ〉 and U † |τ〉 are close to
orthogonal. If they were not, then the bracket 〈τ |U | γ〉 would not be small, and
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so there would be a nonnegligible probability that an observation of U |γ〉 would
produce |τ〉 . If this were the case, then by simply conducting several repeated
experiments, |τ〉 could be readily determined. Thus, the angle between |γ〉 and
U † |τ〉 must be roughly π/2. Since every application of Q rotates the state by
roughly 2 |Uτγ |, we must apply Q

r =
(π

2

)( 1

2 |Uτγ |

)

=
π

4 |Uτγ |

= O
(

1

|Uτγ |

)

(4.51)

times. Thus, we have that
|τ〉 ≈ UQ⊗r |γ〉 . (4.52)

Finally, let us recreate the original Grover operator G from Q. Recall that

G = H⊗n (2 |0〉 〈0| − I)H⊗n (I − 2 |τ〉 〈τ |) , (4.53)

which in our present notation is

G = U(−I0)U †Iτ , (4.54)

using H⊗n = U = U †. Now, we note that

U †GU = U †U(−I0)U †IτU

= −I0U †IτU

= Q. (4.55)

Thus, the Grover operator G may be written as simply a unitary transformation of
the generalized Grover operator Q. We may also recover the complexity of Grover’s
algorithm, as follows. We have shown that the generalized version of Grover’s al-
gorithm is of order O(1/|Uτγ |). Thus, to recover the standard Grover’s algorithm
complexity of O(

√
N). We want

〈
τ
∣
∣H⊗n∣∣ 0

〉
=

1√
N
. (4.56)

This is simple to show. First, we have

〈
τ
∣
∣H⊗n∣∣ 0

〉
= 〈τ |

(

1√
N

N−1∑

i=0

| i〉
)

. (4.57)

Since |τ〉 is orthonormal to exactly one of the kets in the sum (assuming a single
solution to the search problem), this bracket collapses simply to 1/

√
N , and we

recover the complexity of the original Grover’s algorithm.
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4.5 Shor’s Algorithm

Even though the field of quantum computation was born in 1985 with Deutsch’s
seminal paper [3], it was not until 1994, when Shor first published fast quantum
algorithms for factoring and finding discrete logarithms, that quantum computa-
tion became a major field of research. Classically, factoring is a difficult prob-
lem; while it has not been proved to be an exponential time problem, the best
known classical algorithm, known as the Number Field Sieve, runs in a time of
O(exp((logN)

1
3 (log logN)

2
3 )) for a number N [12]. Amazingly, Shor’s algorithm

can factor a number in only O((logN)2(log logN)(log log logN)) steps [13]. The
vast difference between these two time complexities can be seen in Figure 11, in
which each of these functions is plotted against the logarithm base 2 of N , which
gives the number of bits in N when N is represented in binary.

The intense interest generated by the publishing of Shor’s factoring algorithm
sprang not only from the fact that his algorithm was exponentially faster than the
best known classical algorithm, an impressive result in and of itself, but also from a
more practical perspective. Since factoring has long been assumed to be a difficult
problem for large numbers, it was used as the basis for the RSA cryptosystem,
one of the most widespread cryptosystems in use today. Thus, a working quantum
computer running Shor’s algorithm could quickly and efficiently gain access to huge
amounts of encrypted data. Needless to say, this prospect generated widespread
interest.

4.5.1 Number Theoretic Background

Shor’s algorithm relies on a trick from number theory for its efficiency. It is well
known that the problem of factoring a composite number may be mapped into the
equivalent problem of finding the order of a periodic function. Following Nielsen
and Chuang [1] and Ekert and Jozsa [14], we now present this reduction.

Suppose N is a positive integer and x is some integer relatively prime to N such
that 1 ≤ x < N . We define the order of f(x) = x mod N to be the least r such
that xr ≡ 1 mod N . Finding such an r given x and N is referred to as the order-
finding problem, for which there is no known efficient classical algorithm. It is this
order-finding problem for which Shor determined an efficient quantum algorithm.

The heart of the reduction of factoring to order finding is the following theorem:

Theorem 4.1 Let N be a composite number and let x be a nontrivial solution to

x2 ≡ 1 mod N (4.58)

in the range 1 ≤ x < N , with gcd(x,N) = 1. We define a trivial solution to

be x ≡ ±1 mod N . Then, at least one of gcd(x + 1, N) or gcd(x − 1, N) is a

nontrivial factor of N .
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Figure 11: Here, we plot the time complexities of the Number Field Sieve
algorithm and Shor’s algorithm versus the number of bits in the number we
wish to factor. Note that the numbers on the vertical axis have little ab-
solute meaning; in some sense they measure the number of computational
steps necessary to complete the algorithms, but the computing device on
which these steps are performed is not specified, and so neither is the abso-
lute number of steps. Much more important is the shape of the curves and
the relative function values. Comparing these, it is clear that Shor’s algo-
rithm is vastly faster than the Number Field Sieve. Most computers today
use 128 bit numbers in their encryption schemes; it is clear from this plot
that numbers of this length are more than adequate to protect information
from today’s computers. A quantum computer running Shor’s algorithm,
however, could easily break such encryption.
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Proof Let us begin by rewriting x2 ≡ 1 mod N as x2 − 1 ≡ 0 mod N . It is then
clear that N must divide x2 − 1 = (x + 1)(x − 1). Thus, N must have a common
factor with either (x + 1) or (x − 1). Recognizing that −1 mod N = N − 1, the
condition that x is not a trivial solution becomes

1 < x < N − 1, (4.59)

which in turn leads to
x− 1 < x+ 1 < N, (4.60)

and so the common factor cannot be N itself. Thus, either gcd(x+1, N) or gcd(x−
1, N) must be a factor of N .

�

Now let x ≡ yr/2 mod N where r is the order of y mod N . Squaring this
expression, we have

x2 ≡ yr ≡ 1 mod N, (4.61)

where the second equality follows from the definition of the order. It is then clear
that one of gcd(yr/2 +1, N) or gcd(yr/2 −1, N) is a nontrivial factor of N . Thus, by
finding the order modulo N of a number relatively prime to N , we can find a factor
of N . Since there exists a fast classical algorithm to find greatest commons divisors
(see Appendix B), an efficient algorithm for order finding can easily be mapped
into an efficient algorithm for factoring. In the following section, we present Shor’s
quantum order finding algorithm.

4.5.2 Order Finding

As shown above, the factoring problem is easily reduced to the problem of finding
the order of a periodic function. The heart of Shor’s factoring algorithm is thus
an efficient order finding algorithm that depends crucially on the properties of the
quantum Fourier transform, as we will now show.

Let us define a unitary transformation Uf such that

Uf |x〉 |0〉 = |x〉 |f(x)〉 , (4.62)

where
f(x) = yx mod N, (4.63)

where y is chosen such that gcd(y,N) = 1 so that y and N are relatively prime. This
modular exponentiation operator can be implemented efficiently;for our purposes,
however, we treat it simply as a black box. Now, let us begin the order finding
algorithm by initializing two quantum registers to |0〉⊗q, where q is a power of two
satisfying N2 ≤ q ≤ 2N2:

|ψ0〉 = |0〉⊗ log q |0〉⊗ log q . (4.64)
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This choice of q ensures that the quantum Fourier transform we use momentarily
may be computed efficiently. Note that |ψ0〉 is a tensor product of log q qubits
because we are here representing numbers in binary, and log q is the number of
bits in the number q. We then apply a Hadamard transform to the first register,
obtaining

H⊗ log q |ψ0〉 =
1√
q

q−1
∑

x=0

|x〉 |0〉⊗ log q = |ψ1〉 . (4.65)

Now, we apply the Uf operator defined above to this state:

Uf |ψ1〉 =
1√
q

q−1
∑

x=0

|x〉 |f(x)〉 . (4.66)

Now, we measure the second register, obtaining some value y0. Because the two
registers were entangled by the Uf operator, this measurement projects the first
register into a superposition of all x such that f(x) = y0. Let us define x0 to be
the smallest such x. We know that y0 = yx0 mod N . Letting r be the order of f
modulo N , we also know that y0 = yx0+kr mod N for k ∈ [0,K] where K is defined
as

K =

⌈
q − x0

r

⌉

. (4.67)

Incorporating these ideas, the state of the system after the measurement is

|φ〉 =
1√
K

K−1∑

k=0

|x0 + kr〉 |y0〉 . (4.68)

At this point, the second register has served its purpose, and we drop it from our
discussion. Now, let us apply an q dimensional quantum Fourier transform to the
first register, where the Fourier transform operator is

Fq =
1√
q

q−1
∑

b,c=0

|c〉 e
2πibc

q 〈b| . (4.69)

This gives us the state

Fq |φ〉 =
1√
qK

K−1∑

k=0

q−1
∑

b,c=0

|c〉 e
2πibc

q 〈b |x0 + kr 〉

=

q−1
∑

c=0

[

1√
qK

K−1∑

k=0

e
2πi(x0+kr)c

q

]

|c〉

=

q−1
∑

c=0

[

1√
qK

(
K−1∑

k=0

e
2πikrc

q

)

e
2πix0c

q

]

|c〉 . (4.70)
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Using the orthonormality condition for complex Fourier series,

Q−1
∑

q=0

e
2πiaq

Q e
2πibq

Q = Qδab, (4.71)

and the fact that K ≈ q/r, the term in parentheses in equation (4.70) reduces to
[14]

q

r
δc,0 mod (q/r), (4.72)

which says that c must be a multiple of q/r. Let c = j qr . Then we have

Fq |φ〉 =
1√
r

r−1∑

j=0

e
2πijx0

r

∣
∣
∣j
q

r

〉

. (4.73)

A measurement of this register will now give us some c such that

c

q
=
λ

r
(4.74)

where c and q are known. By using a continued fractions expansion (see Appendix
B), we can now determine the period r.

In our discussion of the order finding algorithm above, we have assumed (equa-
tion (4.72)) that the Fourier transform generates constructive interference only for
those c that are multiples of q/r. This, however, is not strictly the case. In fact, for
the algorithm to produce the order of f(x) with high probability, c need only meet
the condition [13]

−r
2
≤ rc mod q ≤ r

2
, (4.75)

which is equivalent to

|rc− dq| ≤ r

2
(4.76)

for some d. Rearranging this expression, we have

∣
∣
∣
∣

c

q
− d

r

∣
∣
∣
∣
≤ 1

2q
. (4.77)

Again, since c and q are known, we may find the period r by again using a continued
fractions expansion. As long as this period is even, we know that at least one of
gcd(yr/2 + 1, N) or gcd(yr/2 − 1, N) is a nontrivial factor of N . If r is odd, the
algorithm fails, and we must try again with a different choice of y.
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4.5.3 An Example: Factoring 15

Here, we illustrate Shor’s algorithm with a relatively simple example. We choose to
factor N = 15, as this is the smallest composite number that is neither even nor the
square of a prime. Thus, N = 15 is the first nontrivial number to factor.

First, we need to pick some y relatively prime to 15; let y = 7. We also need
a q that is a power of two and satisfies 152 ≤ q ≤ 2(152); let q = 256. Using the
notation above, we begin with the state

|ψ0〉 = |0〉⊗8 |0〉⊗8 . (4.78)

The first step of the algorithm is to apply the Hadamard transform to the first
register, giving us

H⊗8 |ψ0〉 =
1√
256

255∑

x=0

|x〉 |0〉⊗8 = |ψ1〉 . (4.79)

We next apply the Uf operator to the second register, giving us

Uf |ψ1〉 =
1√
256

255∑

x=0

|x〉 |7x mod 15〉

=
1√
256

[|0〉 |1〉 + |1〉 |7〉 + |2〉 |4〉 + |3〉 |13〉 + |4〉 |1〉 + . . .] . (4.80)

It is clear from this expression that r = 4. Despite this, we continue with the
algorithm, since in general the order finding problem will not be as simple. The
next step is the measure the second register to obtain some y0; suppose we find
y0 = 13. The first register will then be in a superposition of all the x values that
give f(x) = 13. We can see from equation (4.80) that x0, the smallest of these x
values, is 3. Dropping the second register, just as we did above, the state of the first
register after the measurement is given by

|φ〉 =
1√
64

[|3〉 + |7〉 + |11〉 + |15〉 + . . .] . (4.81)

Now, we must take the Fourier transform of |φ〉 . Using equation (4.73), we have

F256 |φ〉 =
1√
r

r−1∑

j=0

e
6πij

r

∣
∣
∣
∣
j
256

r

〉

. (4.82)

A measurement of the register now will give either 0, 64, 128, or 192, each with the
same probability. Now, using equation (4.74), quickly see that, indeed, r = 4. Now,
since r is even, we know that at least one of

gcd(72 + 1, 15) = gcd(50, 15) = 5 (4.83)
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or
gcd(72 − 1, 15) = gcd(48, 15) = 3 (4.84)

is a nontrivial factor of 15. In fact, each of these is a nontrivial factor; thus, we have
successfully used Shor’s algorithm to factor 15.
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5 Linear Optics Quantum Computation

5.1 Why Linear Optics?

Of the proposed physical realizations of quantum computation, none is simpler than
linear optics quantum computation (LOQC) [15]. While not a feasibly scalable
implementation, there are many advantages to LOQC. First and foremost, the sub-
ject of quantum optics is well understood both theoretically and experimentally. A
wide range of experimental techniques allowing the manipulation of single photons,
which in LOQC are used as qubits, are known. Indeed, single photons provide sev-
eral choices for the definition of qubits. Quantum information can be encoded in a
photon’s two orthogonal polarization states, in different spatial modes of a photon,
or in some combination of the two [16]. In this section, we focus more on using
photon spatial modes as our qubits, since, in theory, a single photon may then be
used to represent an entire quantum register when sent through a multiport beam
splitter, as shown below.

There are also, unfortunately, some major disadvantages to LOQC. The pri-
mary issue, and the one that prevents LOQC from being a fully realizable solution
for quantum computation, is that the number of optical devices necessary to build
quantum circuits tends to scale exponentially with the number of qubits. Also, when
using free space optics, component alignment can be very challenging. Since a linear
optics quantum computer is at its heart a complex interferometer, all the issues in
interferometer design and construction carry over to any experimental implemen-
tation of LOQC. Finally, some multi-qubit gates are much simpler to implement
experimentally using nonlinear optical effects; for the most part, though, we avoid
such constructions due to the additional (and somewhat unnecessary) theoretical
complexity.

Even though LOQC is not scalable, it can be used to implement small quantum
circuits relatively simply, and serves as an excellent test bed for proof of principle
experiments. In the remainder of this section, we present implementations of a uni-
versal set of gates, as well as compact implementations of the Fourier and Hadamard
transforms. Finally, we present some sample quantum circuits implemented with
LOQC.

5.2 Optical Realizations of Universal Quantum Logic Gates

Recall from section 3.4.3 that a universal set of quantum logic gates is given by the
single qubit operations H and T coupled with a control-not gate. We consider here
optical implementations of these gates. We first present realizations of these gates
using the spatial modes of photons as qubits, followed by implementations using
photon polarization.

50



5.2 Optical Realizations of Universal Quantum Logic Gates

5.2.1 Spatial Mode Gates

As we mentioned briefly above, LOQC circuits are in essence interferometers. As
such, LOQC circuits are engineered so that photons travel in one of a number of
discrete optical paths. Classically, a photon can exist in only a single path at a time;
quantum mechanically, however, a photon can have some amplitude of being in a
number of different paths simultaneously. Thus, we can use the location of a given
photon as quantum information, and can use this ‘which-path’ information to define
qubits. We term qubits of this type spatial mode qubits, since the existence of a
photon in a particular path is an excitation of one of the optical modes of that path.
The basis states of a spatial mode qubit correspond to the existence of a photon in
one of two paths.

As an example of a spatial mode gate, consider the π/8 gate T , the simplest
gate to implement in our universal set. The spatial mode LOQC implementation of
the T gate is shown in Figure 12. The interpretation of the right-hand side of this

T ≡

π/4

Figure 12: The π/8 gate operating on a spatial qubit. The shaded box is
a phase shifter.

figure is slightly different from our earlier quantum circuit diagrams. Here, the solid
lines represent not abstract quantum wires, but instead different paths a photon
may take through the circuit. Thus, even though the T gate is a single qubit gate,
there are two solid lines in Figure 12; a single spatial mode qubit is formed by two
optical paths. To make the T gate, we simply insert a π/2 phase shifter into one of
the two optical paths. Identifying the top path in Figure 12 with the |0〉 state and
the bottom path with the |1〉 , this optical setup will perform the transformations

|0〉 → |0〉
|1〉 → eiπ/4, (5.1)

which, in matrix form, is
(

1 0

0 eiπ/4

)

. (5.2)

This, of course, is exactly the transformation performed by the T gate, and so the
circuit of Figure 12 does indeed implement the T gate.
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The Hadamard gate is also simple to implement in LOQC. Recall that in the
standard computational basis, its matrix representation is

H =
1√
2

(
1 1
1 −1

)

. (5.3)

A beam splitter surrounded by two −π/2 phase shifters in one of its modes performs
this operation on a spatial qubit, as is shown in Figure 13 In general, a beam splitter
will perform the transformation

B =

(
R31 T32

T41 R42

)

, (5.4)

where R and T are reflection and transmission coefficients for the paths labelled
by their subscripts [17]. For a 50 − 50 lossless beam splitter, R and T have equal
magnitude, and since the relation

|R|2 + |T |2 = 1 (5.5)

must hold for reflection and transmission coefficients, this magnitude is 1/
√

2. Note,
however, that reflections introduce a π/2 phase shift; there will thus be a relative
phase of π/2 between the reflection and transmission coefficients. We choose to
assign this phase factor to the transmission coefficients. In this case, the final
transformation of a 50 − 50 lossless beam splitter is

B =
1√
2

(
1 i
i 1

)

. (5.6)

Now, if we insert a −π/2 phase shifter in the b-mode both before and after the beam
splitter, as shown in Figure 13, the full transformation becomes

Q =
1√
2

(
1 0
0 −i

)(
1 i
i 1

)(
1 0
0 −i

)

=
1√
2

(
1 1
1 −1

)

= H, (5.7)

and so implements the Hadamard gate.
The last gate in our universal set, the control-not gate, is more challenging

to implement, and cannot be implemented fully deterministically using only linear
optics [15]. The method we will use employs a quantum nondemolition (QND)
measurement of photon number that will function as a conditional phase shift [18].
While a QND measurement employs a nonlinear optical device, namely a medium
displaying the optical Kerr effect [19], optical QND measurements are well under-
stood and do not add significantly to the circuit complexity for our purposes. For a
more careful treatment of optical QND measurements, please see Appendix C.

The control-not gate is shown in Figure 14. Recall that, in the standard basis,
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H ≡

−π/2

−π/2a

b

b

a

1
2

3
4

Figure 13: The Hadamard gate on a spatial qubit. The diamond is a
beam splitter, and it is surrounded by −π/2 phase shifters in the b spatial
mode.

≡

Photon 1

Photon 2

1

0

1

0 H H

QND

Figure 14: Control-not gate implemented with a QND as a conditional
phase shift.
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a control-not gate has the following matrix representation:

CN =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






. (5.8)

In the setup shown in Figure 14, the dual-photon transformations before and after
the QND have the form

I ⊗H =







1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1






. (5.9)

In the photon number basis6, also known as the Fock basis, the QND measurement
operator is given by [20]

Q = eiδn1αn2β , (5.10)

where δ is the magnitude of the conditional phase shift, n1α is the photon number
operator for photon 1 in mode α, and n2β is the photon number operator for photon 2
in mode β. We specify that δ = π, which, although difficult to obtain experimentally,
will allow us to construct a control-not gate. Thus, in the standard basis, the QND
measurement is given by

Q =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1






. (5.11)

Thus, the full transformation performed by the circuit in Figure 14 is given by

(I ⊗H)Q (I ⊗H) =







1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1













1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1













1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1







=







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






, (5.12)

which is exactly the control-not gate.

6that is, the basis where the labels in the kets refer to the number of photons present in the

system.
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5.2.2 Polarization State Gates

Before showing implementations of these universal gates using photon polarizations
as our qubits, we first discuss the optical device known as a waveplate. A waveplate
is a birefringent crystal that introduces a phase shift between the ordinary photons
polarized along the slow axis of the crystal and the extraordinary photons polarized
along the fast axis [21]. Using |o〉 and |e〉 as the ordinary and extraordinary axes,
respectively, this transformation is given by

UWP = |o〉 〈o| + eiφ |e〉 〈e| . (5.13)

Let us label the horizontal and vertical photon polarization bases as |H〉 and |V 〉 ,
respectively. For a waveplate oriented at some angle θ to the horizontal and vertical
polarization axes, as shown in Figure 15, we can transform between these two bases

|V 〉|e〉

θ

|o〉

|H〉θ

Figure 15: Geometry for a waveplate oriented at an angle θ.

using the following unitary rotation:

R(θ) =

(
〈o |H 〉 〈o |V 〉
〈e |H 〉 〈e |V 〉

)

=

(
cos θ sin θ
− sin θ cos θ

)

. (5.14)

Now suppose a photon in an arbitrary polarization state |ψin〉 = ψH |H〉 + ψV |V 〉
enters the waveplate. Rotating into the {|o〉 , |e〉} basis, we have

|ψin〉 = (ψH cos θ + ψV sin θ) |o〉 + (−ψH sin θ + ψV cos θ) |e〉 . (5.15)

Now we can apply the transformation effected by the waveplate:

|ψout〉 = UWP |ψin〉
= (ψH cos θ + ψV sin θ) |o〉 + eiφ (−ψH sin θ + ψV cos θ) |e〉 . (5.16)
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Finally, we must rotate back into the {|H〉 , |V 〉} basis. The final state is

|ψout〉 =

[

ψH

(

cos2 θ + eiφ sin2 θ
)

+
1

2
ψV sin 2θ

(

1 − eiφ
)]

|H〉 +

[
1

2
ψH sin 2θ

(

1 − eiφ
)

+ ψV

(

sin2 θ + eiφ cos2 θ
)]

|V 〉 . (5.17)

It is clear, then, that a waveplate performs the transformation

WP (θ) =

(
cos2 θ + eiφ sin2 θ 1

2 sin 2θ
(
1 − eiφ

)

1
2 sin 2θ

(
1 − eiφ

)
sin2 θ + eiφ cos2 θ

)

. (5.18)

Now, using waveplates we can implement quantum gates. The π/8 gate can be
constructed using an eighth waveplate. An eighth waveplate introduces a phase shift
of an eighth of a wavelength, and so φ = π/4. For an eighth waveplate oriented at
0◦, equation (5.18) reduces to

EWP (0) =

(
1 0

0 eiπ/4

)

, (5.19)

which is the π/8 gate.
Finally, half waveplate creates a phase difference of half a wavelength between

the ordinary and extraordinary photons, and so has φ = π. In general, then, for a
half waveplate, equation (5.18) reduces to

HWP (θ) =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)

. (5.20)

A half waveplate oriented at an angle of 22.5◦, then, will perform the transformation

HWP (22.5◦) =
1√
2

(
1 1
1 −1

)

, (5.21)

which is a Hadamard gate.
The control-not gate (along with every multi-qubit gate) is difficult to imple-

ment using only polarization states. Most LOQC schemes, however, use polarization
for only a single qubit, if at all. It is very simple to construct a control-not gate
using one spatial mode qubit and one polarization qubit [22]. Either qubit may be
used as the control qubit.

As shown in Figure 16(a), placing a half waveplate oriented at 90◦ in the spatial
mode of a photon representing |1〉 implements a control-not gate with the polar-
ization qubit as the target qubit. The polarization qubit can be used as the control
qubit by utilizing a polarizing beam splitter, as shown in Figure 16(b).
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≡
|0〉

|1〉

90◦

(a)

≡

(b) |0〉 |1〉

|1〉 |0〉

Figure 16: Hybrid spatial mode/polarization control-not gates. In each
circuit diagram, the top line represents the spatial mode qubit while the
bottom line represents the polarization qubit. (a) Using a half waveplate
as a polarization rotator in the |1〉 path creates a control-not gate with
the polarization qubit as the target qubit. (b) Here, the target and control
qubits are reversed. The shaded diamond is a polarizing beam splitter.
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5.3 The Fourier and Hadamard Transforms

The two most important transformations used in the known quantum algorithms
are the Fourier and Hadamard transforms. While each of these can be built from
the universal gate set described above (where we are differentiating the one-qubit
Hadamard gate from the n-qubit Hadamard transform), LOQC provides more com-
pact implementations of each. We consider the quantum Fourier transform first.

Consider a symmetric multiport beam splitter [6], which is a straightforward
generalization of the two-port beam splitters we discussed earlier. A symmetric
multiport beam splitter is simply a device with as many input ports as output ports
that can take a beam of light from any of its input ports and divide it equally among
all its output ports. Here we show that a symmetric multiport beam splitter can
implement the quantum Fourier transform on the spatial modes of a photon qubit.
For theoretical simplicity, we once again assume lossless optical components. An
N × N symmetric multiport beam splitter, where N = 2n and n is the number of
qubits, performs a unitary transformation with the defining characteristic that every
matrix element has a common modulus of 1/

√
N [23]. We will now show that any

such unitary transformation can perform a quantum Fourier transform. We begin
by showing that any such matrix may be written in a so-called real bordered form
by factoring out two diagonal matrices, which may be identified with phases of the
input and output beams [24].

Lemma 5.1 Let U be an N × N matrix such that every element has a common

modulus; we will assume a unimodular matrix for simplicity. Then for diagonal

matrices

D1 =








α1

α2

. . .

αN








(5.22)

and

D2 =








β1

β2

. . .

βN








(5.23)

where

αk =

(
U2
k1

U11

)1/2

(5.24)

and

βk =

(
U2

1k

U11

)1/2

, (5.25)

U = D1U
′D2, where the first row and first column of U ′ are entirely ones. Such a

matrix is called real bordered.
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Proof Since both D1 and D2 are diagonal, their matrix elements must be their
eigenvalues. All the αk and βk are of the form eiθ because of the assumption of
unimodularity. Each must therefore be unitary. Using this fact, we define

U ′ = D†
1UD

†
2. (5.26)

Furthermore, we have that

α∗
k =

(
U11

U2
k1

)1/2

(5.27)

and

β∗k =

(
U11

U2
1k

)1/2

. (5.28)

Now, let us find U ′. Multiplying the matrices together, we have

U ′ =






α∗
1

. . .

α∗
N











U11 · · · U1N
...

. . .
...

UN1 · · · UNN











β∗1
. . .

β∗N






=






α∗
1

. . .

α∗
N













U11β
∗
1 U12β

∗
2 · · · U1Nβ

∗
N

U21β
∗
1 U22β

∗
2 · · · U2Nβ

∗
N

...
...

...
...

UN1β
∗
1 UN2β

∗
2 · · · UNNβ

∗
N








=








α∗
1U11β

∗
1 α∗

1U12β
∗
2 · · · α∗

1U1Nβ
∗
N

α∗
2U21β

∗
1 α∗

2U22β
∗
2 · · · α∗

2U2Nβ
∗
N

...
...

...
...

α∗
NUN1β

∗
1 α∗

nUN2β
∗
2 · · · α∗

NUNNβ
∗
N







. (5.29)

Thus, an arbitrary element of U ′ is

U ′
st = α∗

sUstβ
∗
t . (5.30)

Using our expressions for α∗
k and β∗

k, we have

U ′
st = Ust

(
U2

11

U2
s1U

2
1t

)1/2

=
U11Ust
Us1U1t

. (5.31)

It is clear, then, that U ′ is real bordered; replacing either s or t with 1 makes the
entire fraction 1.

�

Now let us apply the unitarity condition to the U ′ defined in the above lemma.
Unitarity says that

U ′†U ′ = I. (5.32)
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We must therefore have

N∑

k

(

U ′†
)

sk
U ′
kt =

N∑

k

U ′∗
ksU

′
kt = δst. (5.33)

The matrix elements of the quantum Fourier transform, indexing from zero, are
given by

Fst =
1√
N
e2πist/N . (5.34)

Inserting this solution into the unitarity condition, we have

∑

k

F †
skFkt =

1

N

N∑

k

e−2πiks/Ne2πikt/N (5.35)

which is the orthonormality condition for Fourier series, and thus is equal to δst.
Thus, a solution consisting of the quantum Fourier transform matrix elements is
consistent with unitarity.

We have thus shown that a symmetric multiport beam splitter, and indeed any
unitary transform with elements of common modulus, can perform the quantum
Fourier transform. The quantum Fourier transform can also be used to simulate
the action of the Hadamard transform on the |0〉⊗n qubit, an essential first step in
many quantum algorithms. A proof of this is shown below.

Lemma 5.2 The quantum Fourier transform and the Hadamard transform produce

the same output state when applied to the input state |0〉⊗n; that is,

Fn |0〉⊗n = H⊗n |0〉⊗n . (5.36)

Proof In the standard basis, the matrix representation of |0〉⊗n is








1
0
...
0








(5.37)

and so therefore, |0〉⊗n will only be affected by the first column of the matrix
representation of any operator acting on it. Let us consider the matrix representation
of the Fourier transform in this basis, as given in equation (5.34):

Fjk =
1√
2n
e2πijk/2

n

. (5.38)
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In the first column of this transformation, k = 0, and thus Fj0 = 1 for all j. Thus
the transformed qubit state will be

1√
2n








1
1
...
1







, (5.39)

which is an even superposition of the 2n basis states of the Hilbert space of n
qubits. But this is exactly the transformation effected by the Hadamard transform
on n qubits, H⊗n, and so

Fn |0〉⊗n = H⊗n |0〉⊗n , (5.40)

as desired.

�

5.4 Some Simplifications

In the above sections, we have shown that LOQC is, at least theoretically, a feasible
physical realization of quantum computation. Unfortunately, LOQC’s poor scala-
bility will limit it to the domain of small quantum circuits. In this domain, however,
there are some simplifications that can be made to make LOQC more robust.

First, we address the issue of the alignment of optical components. Because of
the precision necessary to implement LOQC, the alignment of the necessary free
space optical components can be very challenging. This problem may be solved by
using fiber optics technology. Using optical fibers removes the difficulty of alignment,
and makes the entire quantum circuit more compact. The greatest simplification
comes in replacing any multiport beam splitters, perhaps the most difficult element
of LOQC to implement, with symmetric N × N fiber couplers, which perform the
same transformation on the spatial modes of a photon. Additionally, N×N couplers
provide a simple way of performing the inverse quantum Fourier transform, just as
they do for the transform itself. The inverse quantum Fourier transform matrix
elements are given by

(Fst)
−1 =

1√
N
e−2πits/N . (5.41)

These can be obtained simply by changing the labelling of the output ports of the
fiber coupler, as shown in Figure 17 [25].

Mathematically, this relabelling is represented by multiplication by the operator

U =










1 0 0 · · · 0
0 0 0 · · · 1
...

...
... · · · ...

0 0 1 · · · 0
0 1 0 · · · 0










. (5.42)
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N × N N × N

0

1

N − 2

N − 1

0

1

N − 2

N − 1

0

1

N − 2

N − 1

0

N − 1

2

1

FN F−1
N

Figure 17: N × N fiber couplers for performing the quantum Fourier
transform FN and its inverse F−1

N
.

This operator leaves the 0th row untouched while swapping the 1st row with the
N − 1st row, the 2nd row with the N − 2nd row, and so on. In general, then, we are
swapping the (FN )st and (FN )(N−s)t elements of the transform, where 0 < s < N .
We then have

(FN )(N−s)t =
1√
N
e2πi(N−s)t/N =

1√
N

(
e2πi

)t
(

e−2πist/N
)

=
1√
N
e−2πist/N = (FN )−1

st , (5.43)

as desired.

5.5 Sample Optical Quantum Circuits

Here we present two circuits that implement Grover’s algorithm [10]. The first
circuit searches a two-qubit database using two spatial modes and the polarization
of single photon as its qubits, and is due to Kwiat et al. [16]. The second circuit is
an extension to n qubits using linear integrated optics, and is a simplification of the
circuit presented in Howell and Yeazell [18].

5.5.1 Two-Qubit Circuit

Recall that Grover’s algorithm proceeds as follows: first, we initialize our register
of qubits into an even superposition of all the basis states of that register. We then
invoke an oracle that gives a π phase shift to the desired target state. We then
perform a Hadamard transform on the register, followed by a π phase shift to every
element except the |0〉 element. Finally, we perform another Hadamard transform
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on the register. This process must in general be repeated, but for the two-qubit
register presented in the following circuit, one execution of the main algorithm is
sufficient to transfer all the probability amplitude to the desired target state. As
mentioned above, the two qubits will be the polarization state of a single photon and
two spatial modes. In Figure 18, we use the gates described above to implement the
algorithm directly. We have simply used the gate constructions developed earlier in
this section and laid them out according the Grover’s specification.

22.5◦

−π
2 22.5◦

22.5◦

−π
2

−π/2

π

90◦

22.5◦

22.5◦

−π
2

−π
2

|00〉

|10〉

|11〉

|00〉

|01〉

a

b

a′

b′

b′′

a′′

O

R

A

C

L

E

Figure 18: Optical circuitry to perform Grover’s algorithm on a two-
qubit database. The lightly shaded elements are phase shifters while the
darkly shaded elements are half waveplates. At the end of each path lies a
polarizing beam splitter followed by two photon detectors, which perform
the final measurement on the circuit.

By inspection, though, we can eliminate redundant circuit elements and combine
others, thereby creating a simpler circuit requiring far fewer optical components.
First, we note that operations on the spatial mode qubit commute with operations
on the polarization qubit, since the two qubits are noninteracting. Thus, we can
move the half waveplate from path b into path b′ past the beam splitter and phase
shifter, since the waveplate acts on the polarization qubit and the beam splitter
and phase shifter act on the spatial mode qubit. In path b′, then, we have two half
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waveplates oriented at the same angle directly next to each other. Since the half
waveplate transformation as expressed in equation (5.20) is Hermitian as well as
unitary, these two half waveplates together perform the identity transformation on
the polarization qubit, and thus are not needed.

Likewise, we can move the half waveplate in path a to path a′, where we now
have three half waveplates in a row. These three waveplates together perform the
transformation

HWP (22.5◦)HWP (90◦)HWP (22.5◦) = 1
2

(
1 1
1 −1

)(
1 0
0 −1

)(
1 1
1 −1

)

=

(
0 1
1 0

)

=

(
cosπ sinπ
sinπ − cosπ

)

= HWP (45◦) ,(5.44)

and so these three half waveplates may be replaced by a single half waveplate ori-
ented at 45◦.

Now, looking at the components acting on the spatial mode qubit, in path b′,
we have three phase shifters that combine to a total phase shift of 0, and so may
be eliminated. Similarly, the two −π/2 phase shifters in path b may be combined
into a single −π phase shifter. Finally, the last phase shifter, in path b′′, changes
only a global phase, since by that point the system will be in a pure state. Since
the final step of the algorithm is measurement, this global phase does not matter,
and so this final phase shifter can be dropped.

With these simplifications, the final circuit to implement Grover’s algorithm in
the two-qubit case is shown in Figure 19.

5.5.2 n-Qubit Extension

To construct an n-qubit circuit to implement Grover’s algorithm, it is convenient
to use the alternate version of the algorithm discussed in section 4.4.3. Recall
that in this version of the algorithm, we use repeated applications of the operator
Q = −IiU †ItU to search the database, where U is any unitary transformation and
Iψ = I − 2 |ψ〉 〈ψ| , that is, an identity matrix with the ψψ element equal to −1.

In our circuit, we choose U to be the quantum Fourier transform, since both
it and its inverse are easily constructed using fiber couplers. The Iψ operator can
easily be constructed by placing a π phase shifter in the appropriate path of the
apparatus. A realization of the operator Q is shown in Figure 20. In this figure,
we assume that |0〉 is the initial state of the computer and |2〉 is the target state.
As with the standard version of Grover’s algorithm, the so-called Grover iteration
performed by the operator Q must be iterated O(

√
N) times to reliably produce

the desired target state upon measurement, and so a full circuit to implement the
algorithm would contain O(

√
N) copies of the circuit in Figure 20, followed by a

measurement using photon detectors.
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Figure 19: The “compiled” version of the Grover’s algorithm circuit of
Figure 18, with all redundant components removed.
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Figure 20: An optical realization of the operator Q described by Grover
that may be used to search a quantum database. This example circuit
treats the state |2〉 as the target state.
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6 Conclusion

In this paper, we have discussed many of the central topics in quantum computation.
Every subject we have mentioned is an area of active research. Though quantum
computation appears to be an incredibly promising development in physics, there
are very real issues with the subject. We have not discussed these problems in depth
in this paper due to lack of space, but we take this time to introduce the major issues
associated with quantum computation.

First and foremost, the reader must remember that there is nothing a quantum
computer can do that a classical computer cannot, given enough time, because each
device can compute the same class of functions. And while quantum computers
would seem to be much more efficient than classical computers at some tasks, they
have not been proved to be so. All evidence suggests that quantum computers are
more efficient, but more work must be done to justify this belief. It is eminently
possible that quantum computers are more efficient than classical computers only
in some restricted class of problems. If this were the case, there would be no need
to construct a true general purpose quantum computer; special purpose computers
would suffice.

Secondly, the actual construction of quantum computers is very difficult, and
is probably the largest area of research in quantum computation today. The most
powerful quantum information processors to date can operate on only up to ten
qubits. A quantum computer of this size is effectively useless: it can perform no
real computations. The two main concerns in the construction of quantum com-
puters have been decoherence and the difficulty of efficiently creating large scale
entanglement.

Decoherence, also known as quantum noise, is the process by which superpo-
sitions decay. A quantum computer requires complex superpositions in order to
operate; preventing the corruption of these states is vital to successful computation.
Prevention and correction of qubit corruption is thus an important area of study
in quantum computation, and several lines of research show great promise. Chief
among these is the theory of quantum error correcting codes (QECCs), which builds
on the similar classical theory. The main idea of a QECC is to encode the state of
each logical qubit in several physical qubits in such a way that the corruption of
the logical qubit is detectable and correctable. QECCs have been experimentally
tested and work well; however, the best known code encodes every logical qubit
in five physical qubits, further increasing the requirements for a useful quantum
information processor.

Decoherence occurs because of a quantum system’s interaction with its envi-
ronment. Clearly, then, systems with minimal coupling to the rest of the world
would make good quantum computers. A major problem arises with such systems,
however: the smaller the coupling to the outside world, the more difficult it is to
engineer the entangled states necessary for quantum computation. Conversely, the
easier it is to manipulate a quantum state, the faster it will decohere. A delicate

66



6 Conclusion

balance must therefore be struck to construct a quantum computer.
Because of these difficulties, it is unlikely that there will be a quantum computer

on every desk in the near future. To make an analogy with classical computers,
quantum computation is not yet even to the vacuum tube stage. The immense
promise of quantum computers, however, coupled with the dynamic state of the
field today means that research in quantum computation will continue, and that
the difficulties noted above will be solved. Indeed, researchers at IBM have just
recently demonstrated Shor’s algorithm experimentally [26], factoring 15 into 5 and
3. Computer development has always proceeded more quickly than estimated, and
perhaps the development of quantum computers will be no different.
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Appendices

A Classical Logic Gates

A classical computer, at its base level, is a complex combination of digital circuits.
Digital circuits, in turn, are combinations of a discrete set of classical logic gates.
In this appendix, we briefly discuss the standard set of classical logic gates.

A classical logic gate is a device that transforms some number of input binary
values to some number of output values. The simplest logic gate of all is the not

gate. A basic not gate takes one input value and inverts it. We define the symbol X
to be the inverted value of an input X. The action of the not gate is then specified
in the following truth table:

X X

0 1
1 0

(A.1)

In a truth table such as this, we place the input values on the left and the out-
put values on the right. Each row specifies how one particular set of input values
transforms.

Aside from the not gate, there are two other basic logic operations. These are
the and gate and the or gate. In their basic forms, each of these gates takes two
input values and returns one output value. We represent the and operation by · and
the or operation by +. The action of these two gates is specified in the following
two truth tables:

X Y X · Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X + Y

0 0 0
0 1 1
1 0 1
1 1 1

(A.2)

As the not, and, and or gates are the fundamental digital logic gates, any digital
circuit may be built from them.

Consider now another gate, the nand gate. A nand gate is simply an and gate
with its output inverted, and so is represented by the truth table

X Y X · Y
0 0 1
0 1 1
1 0 1
1 1 0

(A.3)

Interestingly, any digital circuit can be built out of nand gates. This is simple to
show by construction. We need simply to show that nand gates alone can implement
the not gate, and gate, and or gate.
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The simplest of these is the not gate. Suppose we send one input bit into both
input ports of a nand gate. The two input bits to the nand gate must therefore be
the same, and so we are limited to the first and last line of truth table in equation
(A.3). But these two lines (compressing the two input bits into a single bit) compose
a truth table identical to that of a not gate, shown in equation (A.1). In this fashion,
we can build a not gate from a nand gate.

The and gate is also simple to construct. By definition, we must simply invert
the output of a nand gate to obtain a and gate. Connecting the output of a nand

gate to a not gate (or, rather, its implementation in nand gates) suffices.
The or gate is only slightly more complicated to construct from nand gates.

Consider a nand gates with its two inputs inverted. It is simple to check that the
truth table for this configuration is simply

0 0 0
0 1 1
1 0 1
1 1 1

(A.4)

But this is simply the truth table for an or gate, as defined in equation (A.2), and
so this configuration corresponds exactly to the or gate.

Before leaving this appendix, we mention one more classical logic gate that is
often used: the exclusive-or, or xor gate. The xor gate behaves like an or gate
except for the fact that it returns 0 if both its inputs are 1. We denote the xor

operation by ⊕, and its truth table is

X Y X ⊕ Y

0 0 0
0 1 1
1 0 1
1 1 0

(A.5)
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B Classical Algorithms Used in Shor’s Algorithm

As we showed in Section 4.5, Shor’s algorithm relies on both calculating greatest
common divisors and continued fractions expansions. For Shor’s algorithm as a
whole to be efficient, we must be able to calculate both of these in polynomial time.
Luckily, there exist efficient classical algorithms to find both of these quantities. We
present those algorithms here.

B.1 The Euclidean Algorithm for Greatest Common Divisors

First, we define the greatest common divisor of two integers a and b as the largest
integer d greater than zero that divides both a and b.

Euclid’s algorithm for determining these greatest common divisors in turn de-
pends on the basic result known as the division algorithm. The division algorithm
is contained in the proof of the following theorem:

Theorem B.1 Let a and b be integers such that a ≥ 0 and b > 0. Then there exist

integers q and r such that a = qb+ r with 0 ≤ r < b.

Proof We prove this theorem using split induction. Let us consider b to be fixed,
and let P (a) be the statement that the theorem is true for a.

We now have b base cases, one for each a < b, so that a is in the range [0, b− 1].
For each of these cases, a = (0)b+ a, and so the theorem is true in each case, with
r = a in the language of the theorem.

Now, for our inductive step, let us assume that P (a) is true. We want to show
that P (a+ b) is also true. Since P (a) is true, we know that a = qb+ r for 0 ≤ r < b.
Thus, adding b to both sides of this equation, we have

a+ b = qb+ r + b = (q + 1)b+ r. (B.1)

Thus, the theorem still holds for the case a + b with quotient q + 1 and remainder
r. Thus, the truth of P (a) implies the truth of P (a+ b), and since we have proved
b base cases the theorem is proved by induction.

�

This proof suggests the general division algorithm, namely that, given some a
and b we continually subtract b from a, increasing the quotient by one every time,
until a is less than b, at which point we know both the quotient and the remainder.
We express this algorithm more precisely below:

Algorithm: The Division Algorithm

q = 0
repeat until a < b

a = a− b
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q = q + 1
end repeat

r = a
output q, r

Now, we can move on to the Euclidean algorithm. This algorithm makes use of
two facts. The first of these is that if b divides a, then gcd(a, b) = b, which follows
directly from the definition of the greatest common divisor. The second fact is the
following lemma:

Lemma B.1 Suppose a = qb+ r. Then gcd(a, b) = gcd(b, r).

Proof Suppose that some integer d divides both a and b. Then d must also divide
all multiples of b, and so d divides qb. Thus, since d divides a and qb, it will also
divide their difference, which is exactly r, so that if d divides a and b, it also divides
r.

Now, suppose that d instead divides b and r. Then, as above, d divides qb. Since
d divides qb and r, it will also divide their sum, a. Thus, if d divides b and r, it will
also divide a.

Thus, we have shown that the pairs (a, b) and (b, r) have exactly the same com-
mon divisors, and so then the greatest common divisor of the two pairs will also be
the same.

�

Using these two facts, we can write down the Euclidean algorithm, which again
has as its input integers a and b such that a ≥ 0 and b > 0:

Algorithm: The Euclidean Algorithm

r = 1
repeat until r = 0

r = (the remainder when a is divided by b using the division algorithm)
a = b
b = r

end repeat

output a

B.2 Continued Fractions

Suppose x is a rational number. One simple way to represent x is by a continued
fractions expansion, which will allow us to express x as a sequence of integers. A
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continued fraction is an object of the form

a0 +
1

a1 +
1

a2 +
1

. . .+
1

aN

. (B.2)

We define an abbreviation for a continued fraction as [a0, a1, . . . , aN ], and further
define [a0, a1, . . . , an] to be the nth convergent to this expression. The algorithm to
obtain a continued fraction from a rational number is simple; we will illustrate the
procedure with an example. Consider x = 77/65. The first step is to split off the
integer part of this number and invert the fractional part:

x = 1 +
1
65

12

. (B.3)

We now continue this ‘split-and-invert’ process:

1 +
1
65

12

= 1 +
1

5 +
1
12

5

= 1 +
1

5 +
1

2 +
1
5

2

= 1 +
1

5 +
1

2 +
1

2 +
1

2

. (B.4)

At this point, the algorithm terminates, since we can no longer split off a fractional
part from 2. Thus, we have found the continued fractions representation of 77/65,
which we can write as [1, 5, 2, 2, 2].

The real power of the continued fractions method, however, comes from being
able to solve the inverse problem of finding a rational number given a continued
fractions expansion. Suppose we have a continued fraction given by [a0, a1, . . . , an].
Let us make the following inductive definitions:

p0 ≡ a0

q0 ≡ 1

p1 ≡ 1 + a0a1

q1 ≡ a1 (B.5)
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and for n ≥ 2

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2. (B.6)

With these definitions, we can prove the following useful theorem:

Theorem B.2 Using the definitions of pn and qn above,

[a0, a1, . . . , an] =
pn
qn

(B.7)

for all n ≥ 0.

Proof We prove this theorem by induction on n. The basis steps are simple to
prove. For n = 0,

[a0] = a0 =
p0

q0
. (B.8)

For n = 1,

[a0, a1] = a0 +
1

a1
=

1 + a0a1

a1
=
p1

q1
. (B.9)

Finally, for n = 2,

[a0, a1, a2] = a0 +
1

a1 +
1

a2

= a0 +
a2

1 + a1a2
=
a2 + a0(1 + a1a2)

1 + a1a2

=
a2(1 + a0a1) + a0

a1a2 + 1
=
p2

q2
. (B.10)

Now, for the inductive step, suppose that [a0, . . . , ak] = pk/qk for all k such that
3 ≤ k < n. We know that

[a0, . . . , an] =

[

a0, . . . , an−2, an−1 +
1

an

]

=

(

an−1 + 1
an

)

pn−2 + pn−3
(

an−1 + 1
an

)

qn−2 + qn−3

(B.11)

from the inductive hypothesis. But

an−1pn−2 + pn−3 = pn−1 (B.12)

and
an−1qn−2 + qn−3 = qn−1 (B.13)

by definition, so equation (B.11) becomes

1
an
pn−2 + pn−1

1
an
qn−2 + qn−1

=
pn
qn
, (B.14)

and so the theorem is proved by induction.
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�

To see this process work, we consider again our earlier example of x = 77/65.
Recall that we found the continued fractions expansion of x to be [1, 5, 2, 2, 2]. Using
the definitions of p and q above, we have

p0 = 1, q0 = 1

p1 = 6, q1 = 5

p2 = 13, q2 = 11

p3 = 32, q3 = 27

p4 = 77, q4 = 65, (B.15)

and so indeed p4/q4 = 77/65.
Finally, let us show that gcd(pn, qn) = 1, so that the fractions produced by the

above procedure are always in lowest terms. First, consider the following lemma:

Lemma B.2 For all n ≥ 1, qnpn−1 − pnqn−1 = (−1)n.

Proof We will prove this lemma by induction on n. For the base case, consider
n = 1. Then, using the definitions in equation (B.5), we have

q1p0 − p1q0 = a1a0 − (1 + a0a1) = −1, (B.16)

so the base case is proved.
Now, for the inductive step, suppose that qnpn−1−pnqn−1 = (−1)n, and consider

qn+1pn− pn−1qn. Using the inductive definitions of pn and qn in equation (B.6), we
have

qn+1pn − pn+1qn = (an+1qn + qn−1)pn − (an+1pn + pn−1)qn

= an+1qnpn + qn−1pn − an+1pnqn − qnpn−1

= −(qnpn−1 − pnqn−1) = −(−1)n = (−1)n+1, (B.17)

where we have used the inductive hypothesis. Thus, the lemma is proved by induc-
tion.

�

Using this result, we can prove that the fractions produced by the continued
fractions method are always in lowest terms:

Theorem B.3 pn/qn is in lowest terms for all n ≥ 0.

Proof For the n = 0 case, p0/q0 is by definition an integer, and so is in lowest
terms. For all n ≥ 1, suppose that there was some d that divided both pn and
qn, and thus would divide the expression qnpn−1 − pnqn−1. But, as we have shown
above, this expression reduces to (−1)n, so this d must also divide (−1)n. The only
real integers that divide (−1)n are 1 and −1, and so therefore gcd(pn, qn) = 1. Thus,
pn/qn is in lowest terms for all n ≥ 0.

�
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C Optical Quantum Nondemolition Measurements

Recall that in Section 5.2.1, we used a so-called quantum nondemolition measure-
ment to construct a control-not gate. In this appendix, we present the theory
behind such measurements, especially as they relate to quantum optics.

It is well known that any two noncommuting Hermitian operators will satisfy a
Heisenberg uncertainty relation [27]. Because of this fact, sequential measurements
of the same quantum mechanical observable may not yield the same result. Consider
the case of the position x and the momentum p, which satisfy the uncertainty relation

∆x∆p ≥ ~

2
. (C.1)

Suppose we make a precise measurement of the position; we will then have intro-
duced an uncertainty in the momentum such that

∆p ≥ ~

2∆x
. (C.2)

Let us suppose we are working with a free particle. The Hamiltonian7 is thus
H = p2/2m, and the subsequent evolution of the position is given by

ẋ =
1

i~
[x,H] =

p

m
, (C.3)

where we have used the Heisenberg picture equation of motion. Integrating this
equation, we have

x(t) = x(0) +
p(0)t

m
, (C.4)

which leads to [28]

[∆x(t)]2 = [∆x(0)]2 +

[
∆p(0)

m

]2

t2 ≥ [∆x(0)]2 +

[
~

2m∆x(0)

]2

t2, (C.5)

where we have used equation (C.2). This equation shows that due to the initial,
precise position measurement we made, the accuracy of any subsequent position
measurements is ruined. This can be a serious problem; we would like some way to
measure a system without introducing this “back-action.” In essence, we would like
to be able to measure a quantum mechanical system in such a way that subsequent
measurements of the same observable can be predicted deterministically based on
some initial measurement. Such a scheme is known as a quantum nondemolition
(QND) measurement.

Before giving an optical example of such a measurement, let us state the general
conditions that must be met in a QND measurement scheme. In general, we want to

7Note that throughout this appendix, we use the symbol H to refer to the Hamiltonian operator

rather than the Hadamard transform.
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measure some observable As, which we term the signal observable. We will measure
As by coupling it to another observable Ap, which we term the probe observable, in
such a way that the evolution of As is unperturbed. Any observable As for which
we can achieve this is termed a QND observable.

Let us write the Hamiltonian of the signal-probe system as

H = Hs +Hp +HI , (C.6)

where the three terms refer to the signal system, the probe system, and the inter-
action between the two, respectively. For a measurement of this coupled system to
be a QND measurement, the following conditions must hold [28]:

• HI must be a function of As. If it were not, a measurement of Ap could not
give any information about As.

• Ap cannot be a constant of the motion, and so [Ap, HI ] 6= 0. If Ap were a
constant of the motion, we could not use it to measure As, since its expectation
value would not change.

• As must not be affected by its interaction with Ap; thus, [As, HI ] = 0. This is
simply a statement of what we are trying to achieve by using a QND.

• The signal Hamiltonian Hs must not be a function of Acs, the canonical conju-
gate of As. This requirement ensures that the evolution of As will not be affected by
its measurement, as in the case of the back-action discussed above for the position
and momentum operators.

Let us now move on and consider QND measurements in quantum optics. Sup-
pose we want to measure the number of photons in a particular beam, as we did
in Section 5.2.1. Conventional measurement methods using photon counters are
destructive, absorbing the photons in order to count them. As we saw in Section
5.2.1, however, there are times when we would like to allow the measured beam to
continue to propagate through the system. Using nonlinear optics, we show below
a QND method to measure photon number.

The nonlinear effect will we use is the Kerr effect. In electrodynamics, one often
makes the approximation that dielectrics are linear media, so that the polarization
is related to the electric field via P = ε0χE, where ε0 is the permittivity of free space
and χ is the electric susceptibility. Linear dielectrics also have constant indices of
refraction. In actuality, however, dielectrics are not linear, and the polarization
must be written as a power series in E:

P = ε0

(

χ(1)E + χ(2)E2 + χ(3)E3 + . . .
)

. (C.7)

The index of refraction will be a similar power series in E. Generally, the first
nonzero term in the expansion will be the dominant effect in the material; for
example, the first order term in the index of refraction expansion gives rise to the
Pockels effect. In crystals with a center of symmetry, however, the first order effect
vanishes, and so the second order Kerr effect is the dominant nonlinear characteristic
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of the material. The strength of the Kerr effect is proportional to χ(3), the coefficient
of the third power of E in the expansion of the polarization.

Now, consider Figure 21. Using the setup in this figure, we can measure the

Signal

Probe

L

Kerr Medium

Figure 21: A diagram of a setup to measure the photon number of the sig-
nal beam. The signal beam is coupled to the probe beam via the nonlinear
Kerr medium. The probe beam is sent through a Mach-Zehnder interfer-
ometer with the Kerr medium in one arm. A phase shift proportional to
the number of photons in the signal beam will be induced in the part of
the probe beam in the nonlinear leg of the interferometer, which can then
be measured by the detectors at the end of the interferometer.

number of particles in the signal beam without destroying them. We achieve this by
sending a probe beam through a Mach-Zehnder interferometer with a Kerr medium
of length L in one leg. Both the signal beam and the probe beam will pass through
the Kerr medium, which provides the coupling we need. We will use the Hamiltonian
of equation (C.6), where [29]

Hs = ~ωs

(

a†sas +
1

2

)

Hp = ~ωp

(

a†pap +
1

2

)

HI = ~Ka†sasa
†
pap. (C.8)

In these equations, ai and a†i are the usual creation and annihilation operators for
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the electromagnetic field, defined by [17]

ai |n〉 =
√
n |n− 1〉

a†i |n〉 =
√
n+ 1 |n+ 1〉

ai |0〉 = 0

[ai, a
†
j ] = δij , (C.9)

the ωi are the angular frequencies of the beams, and K is constant proportional to
χ(3). The QND observable we will be measuring is a†sas = ns, the photon number
operator for the signal beam. The probe observable is the phase of the probe beam;
due to the complications involved in defining a phase operator [17], we will not
state the probe operator explicitly but will instead work only with the creation and
annihilation operators of the probe field.

Now, in the Heisenberg picture, the equation of motion of the probe field anni-
hilation operator is

ȧp =
1

i~
[ap, HI ] = −iKns[ap, a†p]ap = −iKnsap. (C.10)

We can convert this equation into a spatial differential equation by recognizing that
t = −z/vg, where z is the distance traveled by the probe beam through the Kerr
medium and vg is the group velocity of the beam in the medium [29]. Integrating
the resulting equation, we get

ap
′ = eiκnsap, (C.11)

where κ = KL/vg and the primed annihilation operator refers to the probe field
after the interaction with the signal field. Thus, we can see that a phase shift
proportional to the number of photons in the signal beam has been introduced into
the probe beam in one leg of the interferometer. The resulting interference pattern
of the recombined probe beam will thus yield the number of photons in the signal
beam.

Note, however, that we must have also induced an analogous phase shift in the
signal beam as a result of this QND measurement. A more clever experimental
setup can remove this phase, if it is unwanted [29]. As we have seen in Section 5.2.1,
however, this extra phase can be useful, so for the purposes of this paper we do not
correct it.
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