
Applying the Compass Operator to Texture Edge Detection

Stephanie J. Wojtkowski
Swarthmore College

jill@sccs.swarthmore.edu

April 29, 2002

Abstract
Segmenting contiguous regions of similar texture from im-
ages is a problem whose solution continues to elude com-
puter vision researchers. Methods such as Laws’ texture en-
ergy measures, cooccurrence matrices, Fourier transforms
and wavelet transforms have been applied with only moder-
ate success. This thesis proposes an adaptation of Ruzon and
Tomasi’s compass operator [8] to texture images for more ef-
fective texture edge location. The operator is highly success-
ful at finding color edges and possesses some characteristics
that make it well-suited for texture segmentation. To adapt it
to texture analysis, a convolution filtering method like Law’s
texture energy measures or cooccurrence matrices is first ap-
plied to the image. The compass operator is then applied to
find edge magnitudes and directions in the filtered image. A
robustness test shows that this method is relatively impervi-
ous to noise. However, the method is sensitive to the distance
metric that is used for comparing histograms. Both the

���
norm and histogram intersection were used unsuccessfully
due to the nature of natural texture images. In contrast, the
dynamic time warping method provided an accurate distance
measure that produced successful results.

1 Introduction
The field of color segmentation has been well-explored, pri-
marily because useful metrics for color are well-defined,
providing an accurate characteristic that can be used for
color segmentation. However, texture segmentation contin-
ues to be a growing area of research because of its complex-
ity. A typical segmentation will isolate individual texture
primitives, a result which is both time consuming and un-
informative. Segmenting texture in a more meaningful way
presents a more difficult problem for several reasons. First,
researchers have thus far been unable to devise a detailed,
comprehensive metric for describing textures. The existing
metrics, such as energy, entropy, coherence, etc. are not easy
to interpret because they represent local characteristics that
change as you move through a texture. Most often it is not
clear exactly what texture feature each of these metrics rep-
resents, and when it is clear the classification is crude at best.

Another reason why texture segmentation is more difficult
than color segmentation is that a texture does not comform to

one value under a filter, as a color does. Instead, the texture
is subject to a distribution of values when filtered. An opera-
tor like the Sobel operator will not be able to detect this sort
of edge because it does not take into account the distribu-
tion of values around the edge. Thus, a histogram matching
technique is more suited to this application. The proposed
compass operator uses histogram analysis to detect edges.

A third difficulty is that one texture could be locally sim-
ilar to another but globally different. Many filter operators
focus on the local characteristics near a pixel to detect an
edge and would not be able to detect these kinds of edges.
The proposed compass operator will pick up on larger trends
in the image without being dominated by local characteris-
tics.

2 Related Work
Texture analysis is typically conducted using two types of
methods: statistical and syntactic methods. Included within
the statistical methods are filtering techniques such as Laws’
texture energy measures or cooccurrence matrices and fre-
quency based techniques like Fourier and wavelet trans-
forms. These techniques currently dominate the field of
texture analysis due to their documented success. Included
among syntactic techniques are shape chain grammars and
primitive grouping. Section 2.1 and Section 2.2 describe
these techniques in greater detail. Section 2.3 describes
common methods for interpreting statistical data.

2.1 Statistical Methods
Statistical methods attempt to use the results of localized
texture metrics to make statements about the composition
of an image. Characteristics such as texture energy or con-
trast might be computed and then evaluated to segment tex-
ture regions. Statistical methods have been used for texture
segmentation with varying degrees of success. They include
Law’s texture energy measures, cooccurrence matrices, and
Fourier and wavelet transforms.

2.1.1 Laws’ Texture Energy Measures

Law’s texture energy measures are a set of filters designed to
identify specific primitive features such as spots, edges and

ripples in a local region [1]. The origin of the Laws’ filters
are three vectors:

�������
	������	��
to smooth

����������	�������	��
to locate edges (first difference)

� ��������	��������	��
to identify spots (second difference)

These three vectors can be convolved with themselves and
each other to produce five � � 	 vectors. The resulting vectors
are

��!����
	"��#$��%&��#���	��
�'!(�)����	�����������*&��	��
� !(�)����	��*�&�*&��������	��
+ ! ������	��*&�����������	��
, ! ������	����-#$��%����-#���	��

The names of the vectors are mneumonics for Level,
Edge, Spot, Wave and Ripple, which indicate the kind of fea-
ture that each filter is designed to detect. These � � 	 vectors
can be multiplied to produce a set of � �.� masks that are then
applied to the image.

The Laws’ texture energy measures were implemented so
that the proposed compass operator could be compared with
the k-means clustering technique. Figure 1 shows the results
of applying four different Laws’ filters to an image contain-
ing two textures.

2.1.2 Cooccurrence Matrices

Cooccurrence matrices [2] are a method for identifying pat-
terns of repeating intensity values in an image. Let / and 0
be the lengths of the sides of the rectangular region to be fil-
tered. Let 1 be the angle at which matches will be searched
for, and let 2 be the distance at which the match is sought.
Let 3 be the number of buckets into which the 0 to 255 pixel
intensity range is divided to reduce the amount of stored in-
formation. For each / x 0 region in the image, a 3 x 3 matrix465"7 8

is created. Each location
� � ��9&� in the matrix contains

the number of times a pixel in intensity bucket � was found
to have a pixel in bucket

9
at a distance of 2 and an angle 1

in the given region. This algorithm will produce a symmetric
matrix showing the frequency of the given intensity pairings
at the specified direction and distance.

Once the matrix has been constructed, several statistics
which describe the filtered region can be calculated from it
[3]. Energy, entropy, contrast and homogeneity are found
according to the following formulas:

� 0;:�<�= 9>�@?
A 7 B 4 �5"7 8 � / � 0 �

� 0DCE<GF�H 9I� ?
A 7 B 4 5"7 8 � / � 0 �KJML�N � 4 5"7 8 � / � 0 �

O F�0DCE<GP�Q�C � ?
A 7 B � / � 0 � � 4R5"7 8S� / � 0 �

T F�/UF�=K:�0;:�VWC 9>� ?
A 7 B

4 5"7 8 � / � 0 �	YX[Z / � 0 Z
Figure 2 shows the results of applying cooccurrence matri-
ces to the same image pictured in Figure 1. Matrices were
calculated for angles \ �]�S^���_��S^

and for 2 �`&��%
. Then

the energy, entropy, contrast and homogeneity were calcu-
lated for each of the four combinations of 2 and \ . The four
filtered images in Figure 2 are the energy, entropy, contrast
and homogeneity calculated with 2 �[

and \ �a_��K^
.

2.1.3 Fourier Transforms and Wavelets

The Fourier transform of an image involves decomposing the
image in the frequency domain [4]. The image is represented
as a sum of sinusoidal waves with different periods and am-
plitudes. One of the difficulties with this approach is that the
domain of an image is finite, whereas sine waves are infinite.
Consequently, the Fourier transform uses complex combi-
nations of sine waves to create destructive interference that
zeroes the signal outside the domain of the image. This re-
sults in a lot of extra overhead simply to zero out most of the
domain. Also, the individual sine waves that the transform is
composed of commonly do not correspond directly to image
features in any meaningful way, since the image is unlikely
to contain periodic features.

The wavelet transform does not suffer from the weak-
nesses of the Fourier transform. First, some wavelets pos-
sess the quality of compact support, meaning that they are
non-zero only over a finite domain, like an image. Conse-
quently, the complex pattern of destructive interference is un-
necessary in this case. Second, the wavelets could conceive-
ably each correspond to an image feature since they each de-
scribe a local image feature. Thus, the wavelet decomposi-
tion presents valuable information about the composition of
the textures in an image. In addition, wavelet solutions tend
to converge more quickly than their Fourier counterparts.

2.2 Syntactic Methods
Statistical methods have dominated texture analysis because
of their relative success. However, there are other methods
which have shown some merit. Syntactic techniques such as
shape chain grammars or graph grammars [5] are among the
viable alternatives to statistical methods. Shape chain gram-
mars involve describing each texture with a grammar similar
to those found in formal language processing. Each texture
primitive is described by a symbol, and the arrangement of
symbols in a string represents the spatial relationships be-
tween primitives. Graph grammars label each texture primi-
tive as a node in a graph, with the edges of the graph indicat-
ing the connectivity of the primitives. The difficulty in both

2

Figure 1: The image on the left has been filtered with a suite of Laws’ filters. From left to right, the image has been filtered
with

�
x
�

,
,

x
,

,
�

x
+

and
+

x
+

. The pixel intensity indicates the magnitude of the filter response for all images in this
thesis.

Figure 2: The original image and the corresponding energy, entropy, contrast and homogeneity, respectively. The calculations
were performed for 2 �a

and \ �a_��K^
.

of these methods is creating models of the texture primitives,
particularly for pseudorandom textures or for textures where
the primitives are partially occluded, such as in images of
grass.

2.3 Interpreting Statistical Data

Once statistical data has been collected over an image, it
must be interpreted to produce meaningful pixel groupings
according to texture. Two of the most common methods
for achieving this are k-mean clustering and normalized cuts.
These methods cluster the data based on the statistics inde-
pendently collected at each pixel and are thus highly suitable
for creating non-contiguous segmentations. However, tex-
ture regions are assumed to be contiguous, providing a prop-
erty that can be exploited by segmentation techniques. We
therefore suggest applying Ruzon and Tomasi’s color com-
pass operator to texture segmentation since it is designed to
locate prominent edges in an image. The two traditional ap-
proaches, as well as our novel approach, are described below.

2.3.1 K-Means Clustering

K-means clustering [6] is a simple way to group a collec-
tion of 0 -dimensional vectors into b distinct groups. Ini-
tially, b vectors are chosen at random from the space of0 -dimensional vectors in the images to represent the initial
cluster centers. The first data vector is then compared to each
of the b centers to find the closest one, call it V . One of sev-
eral distance measures could be used, including Euclidean
distance and the Earth mover’s distance. The vector is then
added to the V -h cluster, and its position is averaged with the
centroid of the cluster to form a new centroid. This process
is repeated for each vector until they have all been exhausted.
The result is a clustering of the vectors into b distinct sets,
each of which represents a principle component of the data.

To apply this technique to texture segmentation, a texture
image is first processed using a collection of filters such as
Laws’ filters or cooccurrence matrices. The resulting images
are then used collectively to segment the image. Given 0 fil-
tered images, an 0 -dimensional vector exists at each pixel.
In other words, each pixel has 0 values associated with it,
one for each value that it acquired after being filtered with
one of the filters. These 0 values can be treated as a vector in

3

0 -space that describes the texture characteristics at that par-
ticular pixel. Dividing these vectors into b clusters produces
a segmentation of the image into b distinct texture regions.

This method has the advantages of being conceptually
simple and computable in c � 0 � time, where 0 is the num-
ber of pixels in the image. The major disadvantage of this
method is its ability to produce non-contiguous segmenta-
tions. If a texture varies greatly on the local level but con-
forms to a global distribution, this method will cluster the
texture into many small, local clusters. Also, the program
must be told precisely how many clusters to look for before
it calculates the clusters. This prevents the segmentation pro-
cess from being entirely autonomous by requiring human in-
tervention.

Examples of clustering based on b -means clustering can
be seen in Figure 3. Each row shows the original image fol-
lowed by the results of k-means in combination with cooc-
currence matrices and Laws’ filters, respectively. The top im-
age is an example where k-means clustering performs very
well, whereas the bottom row shows an image that the al-
gorithm cannot accurately segment. The clustering program
was asked to find 2 and 3 clusters, respectively.

2.3.2 Minimum Cut and Normalized Cut

Another way of interpreting the statistics described above is
to represent the image as a graph where each pixel is a node
in the set of all pixels, d . There is an edge between each
pair of nodes (pixels) in the image, with the set of all edges
denoted

�
. The weight of an edge in the graph is determined

by the similarity of the two nodes that form the endpoints
of the edge as well as the Euclidean distance between the
nodes. Under this representation, the problem of segmenting
the image is transformed into a problem of finding the op-
timal cut(s) in the graph. A cut is defined as a partitioning
of the nodes in the graph into 2 groups, e and 3 , such thategfh3 � d � egih3 �kj

. The value of the cut is calculated
from the weights of the edges that have one endpoint in e
and the other in 3 .

The typical method for quantifying a cut is to define the
cost of the cut as the sum of the weights of the edges that are
removed to achieve the cut:

lnm C � e � 3 �o� ?
p�q�r 7 s q�tvu

� m ��w��

where u
� � ��9�� indicates the magnitude of the edge between

nodes � and
9

. The cut that minimizes this value, called
the minimum cut, could be considered the optimal cut of the
graph. The minimum cut approach has the advantage of be-
ing a well-documented problem that can already be solved
efficiently. However, this method proves to be too simple
to accurately reflect the perceptual grouping in the image.
Looking for the minimum cut favors segmenting out a small,
isolated set of nodes, which may not be the best segmentation
strategy. The normalized cut criterion [7] was proposed as an
alternative to the minimum cut that provides a more mean-
ingful graph partitioning. Instead of simply minimizing the

weights of removed edges, the normalized cut minimizes the
proportion of the cut edges to the sum of all of the edges that
touch a vertex in either partition:

0;F�<�/UPKxyVEzS:�2 lnm C � lnm C � e � 3 �
PKQ�Q�F l � e � d � X l{m C � e � 3 �

PKQ�Q�F l � 3 � d �
where P�Q�Q�F l � e � d �o� ?

p"q�r 7 | qS} u
� m � C �

This method encourages a partitioning along the loosest as-
sociations in the graph, as desired. It is unlikely to par-
tition isolated nodes because the cut value for removing a
few nodes is a very large portion of the total association of
those nodes. Some results of using normalized cuts on im-
ages can be found in [7]. This method has the advantage
that it can be solved using a generalized eigenvalue system,
for which there are already efficient algorithms. However,
graph cut methods like the two presented in this paragraph
suffer from the same disadvantage as the k-means clustering
method: both need to know the desired number of clusters in
advance.

2.3.3 Compass Operator

The compass operator [8] is a recent development in color
edge detection. Conceptually, a compass of fixed radius is
first dropped on a pixel. As the “needle” is spun around, the
difference in color between the semicircles on either side of
the needle is calculated. The needle direction that produces
the largest value is accepted as the edge, and the difference
is the magnitude of that edge. Thus, a value like a gradient
is produced with a direction and a magnitude. The Earth
mover’s distance is used to compute the difference between
the two halves.

This operator is largely the basis for this thesis. The oper-
ator is highly successful in detecting color edges in images,
even with significant textural influences. In this thesis, we
desire to adapt this color edge detection technique to tex-
ture edge detection, since the operator is well-suited for both
edge detection and texture analysis. The operator’s structure
makes it a natural edge detector, and the use of histogram
analysis is suitable for texture analysis since a texture tends
to exhibit a distribution of values under a filter instead of a
single value.

This method has an advantage over the k-means and no-
ralized cut approaches because it exploits the contiguous
property of texture regions. Instead of performing a point-
by-point clustering of pixel characteristics, it instead looks
at the macro structure of the image and tries to find locations
that are likely to be edges. It also does not need advanced
knowledge of the number of clusters desired, making it fully
autonomous.

4

3 The Compass Operator

The compass operator was originally designed to find edges
in an image containing several regions of different colors.
In this thesis, we attempt to adapt the compass operator to
texture segmentation. The compass operator can be applied
to an image in several ways. If ~ is the set of edge angles
that are tested with the compass, the most obvious method
for applying the compass is to create ~ filter images, one per
angle. Each image contains a circular mask for the image
that designates which half of the compass a pixel is in for
the given angle. Each filter image is then compared to the
target image pixle-by-pixel for filtering. This method is sim-
ple, but it is clumsy and requires alot of unnecessary storage
space, particularly for high granularities. We chose to use
a more elegant vector-based approach which only necessi-
tates the storage of one compass image regardless of angle
granularity. Each pixel in the compass is treated as a vector
from the compass origin, and the dot product of this vector
with a perpendicular to the compass needle indicates which
half the pixel falls on. This information is used to calculate
histograms for the two semicircles of the compass and sub-
sequently find the edge direction of maximum magnitude.

The remainder of Section 3 explains the details of the
compass operator. Section 3.1 explains the necessity of pre-
processing the image and describes the kinds of preprocess-
ing filters that may be used. Section 3.2 describes the nor-
malization process that was applied to ensure that no sin-
gle preprocessing filter would dominate the compass results.
Section 3.3 describes the contents of the configuration file
that is used by the system. Section 3.4 demonstrates the
mathematics behind the construction of the compass opera-
tor. Section 3.5 shows how the compass operator is applied to
the image after preprocessing. Finally, Section 3.6 describes
how the filtered compass images are combined to produce a
direction and magnitude for each edge in the image.

3.1 Filtering the Original Image

When the compass operator was applied to color images, no
preprocessing was necessary. The distance in color space
between adjacent pixels is an adequate measure of the sim-
ilarity of two pixels, and thus can be used to determine the
similarity of colors along an edge. Since the measurement
of color is inherent to an image, it is unnecessary to apply a
color metric before using the compass operator.

Trying to distinguish texture regions is a more complex
problem. Before edges can be found, a method must be de-
vised to quantify texture features so that their magnitudes
can be compared. The problem of defining and measuring
texture continues to be an area of active thought. Since our
interest is in the interpretation of texture measures and not in
their construction, we chose to use preexisting texture mea-
sures to preprocess the image. The two methods selected
were Laws’ filters and coocurrence matrices. Figure 1 and
Figure 2 show examples of these filters.

3.2 Normalization

Once the image has been preprocessed, the filtered images
are normalized so that no filter dominates the edge magni-
tude calculation. Normalization according to standard devia-
tion was selected because it colors pixels relative to their dis-
tance from the mean value in the image. The average value
of the pixels in a filtered image is first calculated. The stan-
dard deviation of the pixel values is then computed based
on this mean, redistributing the values in an equitable way.
The standard deviation measures the spread of values in a
distribution. For a pixel

� � ��9&� in the image, the following
calculation is performed:

VW0DC
:�0�Q�VWC 9D� � ��9&��� VW0DC
:�0�Q�VWC 9�� � ��9���� /�:�PS0
Q�C
PS0;2"PS<G2S2": w VWPSCEVEF�0

This computes how many standard deviations the value of� � ��9&� is from the mean. The results are then restricted to
the range -2 to 2, since approximately

_ �S� of values oc-
cur in these four standard deviations. The values are then
shifted so they are all positive and stretched to the range 0
to 255. The resulting image is sent to the compass operator.
This normalization procedure prevents one preprocessing fil-
ter from dominating the compass results as well as allowing
for the combination of several different types of filters on
equal footing.

3.3 Configuration

Before the compass can be applied to the filtered image, the
framework for filtering is prepared. The compass system first
reads in a configuration file. This file includes the desired
compass radius, as well as the number of angles that the fig-
ure will test, called the granularity. If, for example, the user
would like to test at a granularity of 4, the compass needle
would be inserted at

�S^���# � ^G�*_��S^ and
	�� � ^ . The 4 angles that

are each
	���� ^

from those above are omitted because testing
them would be redundant. Figure 4 shows an example of a
compass with granularity 4. The four tested angles are num-
bered and drawn in black, while the omitted angles are drawn
as dashed grey lines.

The configuration file also contains the names and dimen-
sions of the preprocessing filters to be run. To make the com-
pass more accurate, all pixels that are within a preprocessing
filter’s radius of the compass needle are omitted from pro-
cessing. This is necessary because the preprocessing of these
pixels included information from pixels on the other half of
the compass. Omitting these pixels gives a more accurate
measure of the gradient across the two halves. Figure 5
shows a compass generated with a granularity of 5. The dark
gray pixels are one half, the light gray pixels are the other
half, and the black pixels are those that are omitted for a pre-
processing filter of radius 5. Each circle has a radius of 30
pixels.

All of the information in the configuration file is read in,
and then the image is preprocessed. The compass is then

5

1

2

3

4

Figure 4: Example of a compass drawn at granularity 4. The
four numbered vectors are those that are tested for high edge
magnitudes. The four grey vectors are not included because
they are redundant.

constructed from the parameters in the configuration file us-
ing the method decribed in Section 3.4.

3.4 Creating the Compass
The creation of the compass requires several steps. The im-
portant features of the compass are depicted in Figure 4.
First, a circle of the given radius < is drawn in an image
buffer. As before, let ~ be the set of angles that are tested
for a given granularity. The coordinates for the endpoints of
unit vectors from the origin toward each direction in ~ are
cached in an array for rapid access.

Before the compass is applied to the image, the perpen-
dicular distance of each point on the compass from the com-
pass needle is calculated. The compass is prepared for these
calculations as depicted in Figure 6.

m
H

w
�

Figure 6: Diagram of the compass applied at a particular
orientation, \ .

First, an imaginary line
�

is drawn on the circle to bisect
it along the direction of the compass needle. The endpoints
of a unit vector m that is perpendicular to

�
and starts at the

origin are then calculated. This vector can be used to find the

distance of a point H from
�

. If
w

is a vector from the origin
to H , then

w�� m � 2
where the magnitude 2 is the distance of

w
from

�
and

the sign of 2 indicated which half of the compass H is on. 2
is cached for each pixel in the compass to make filtering the
image faster and simpler.

3.5 Applying the Compass
There are two main components to applying the compass to
a filtered image. Section 3.5.1 describes the method used to
calculate the semicircle histograms of the compass operator.
Section 3.5.2 addresses the issue of selecting a metric for
comparing histograms.

3.5.1 Computing the Semicircle Histograms

The preprocessing stage produces a set of filtered images,
one for each initial filter application. The next step is to apply
the compass operator to each pixel in each image in this set.
The compass is applied seperately for each angle in the given
granularity. The process for a given compass angle = is as
follows. Two histograms are initialized in advance to record
the distribution of values in each semicircle of the compass.
The compass filter is placed on top of each pixel in a filtered
image. Let the current pixel be denoted

� � ��9&� . For each
pixel

� / � 0 � in the compass, the value of 2 is examined. If
the preprocessing filter had radius � , then we compare the
value of 2 with the value of � .

If 2���� , then
� / � 0 � is in the first semicircle. The ab-

solute address of
� / � 0 � when the compass is centered at� � ��9&� is calculated. The magnitude of the resulting location

in the filtered image is then added to the histogram for the
first semicircle.

If 2�� � � , then
� / � 0 � is in the second semicircle. The

absolute address of
� / � 0 � is calculated in the same way, and

the value of the resulting location is added to the histogram
for the second semicircle. Any other values of 2 are ignored,
either because they are outside the compass or because they
are in the region between the two semicircles that we are
ignoring as described in Section 3.3.

3.5.2 Comparing Histograms

Once the two histograms are calculated, the magnitude of the
difference between them must be calculated so that edges can
be identified. The simplest method, and the method that was
attempted first, is to perform a histogram matching. The sum
squared difference (

� �
norm) of the number of pixels in cor-

responding buckets of the two histograms is calculated. This
method suffers from two large problems. First, if the his-
togram granularity is too fine then regions that are very close
in intensity but not exactly equal will have a large histogram
difference. Second, histogram matching is dominated by

6

outliers, whereas we are looking for the overall distribution
of a texture, and the outliers will produce skewed results.

A second method for calculating the similarity of two his-
tograms is to compute their intersection. This method is
similar to calculating the intersection of two sets. For cor-
responding buckets in two histograms, the smaller value is
added to the intersection sum. This essentially calculates the
number of histogram entries that are common to both his-
tograms. This method was also tested with the compass op-
erator, but it did not perform any better than the histogram
difference method.

It was surprising to find that both of the methods above
produced good results on synthetic images and poor results
on similar real texture images. However, the reason for this
phenomenon became evident upon closer examination. In
each synthetic image in Figure 9, the color of non-noise pix-
els on one side of the edge is uniform. This creates a his-
togram in which one particular bucket will have a very high
value and the surrounding intensities will have relatively low
values. Since this peak will occur at different values on dif-
ferent sides of the edge, the histogram difference is high and
the edge easy to find. At the same time, two histograms in
a location with no edge will both have the peak at the same
value, giving them small histogram differences.

In a real texture image, the values on one side of an edge
are not perfectly uniform. Though the values will cluster
in one area of the histogram, this non-uniform property will
produce a large histogram difference. Figure 7 shows two
sample histograms. The distributions and means of the two
curves are very similar, but a histogram difference or his-
togram intersection will find them to be very different be-
cause they have different values for corresponding intensi-
ties. Ideally, the distance metric used to compare histograms
would not be influenced by such minor differences in inten-
sity. Dynamic time warping was selected as a method that
would minimize these effects.

Dynamic time warping [9] is a dynamic programming ap-
proach to finding a correspondence between two signals in
time. Each of the two 3 bucket histograms can be repre-
sented as a signal that evolves over 3 timesteps, with the his-
togram magnitude determining the magnitude of the signal
at a given time. Given time Q from histogram #1 and time C
from histogram #2, the histogram difference between all pos-
sible Q and C is computed and stored in a Q x C cost matrix, call
it
O

. The goal of dynamic time warping is to find the ideal
(minimum cost) matching between the two signals. This cor-
responds to finding the minimum cost path from

���&���S�
to� Q � C � in

O
. The path is found by iterating through the entries

in
O

. For each entry : , the three entries down and to the left
of : are examined for the minimum cost path that leads from���&���S�

to a spot adjacent to : . The cost of being at point : is
added to this minimum value and reinserted into the matrix
as the cost of the path from

���&�*�"�
to : . The process continues

until
� Q � C � is reached. At this point, the minimum cost to get

from
�������S�

to
� Q � C � will be located in matrix position

� Q � C � .
To ensure that the points in the signals were matched only
with other points in relative temporal proximity, the cost val-

Figure 7: Example of two histogram distributions. The two
are similar, but a histogram difference or histogram intersec-
tion will find them to be very different. Dynamic time warp-
ing successfully matches the two signals so their difference
is minimized.

ues for matrix locations that did not exhibit this quality were
set to a prohibitively large value. This effectively prevents
any paths from including those correspondences.

3.6 Calculating Edge Strength
Once the compass operator has been applied to each filtered
image and the maximum histogram difference and angle has
been calculated for each pixel, the results need to be com-
bined into one edge image. A simple summation and thresh-
olding technique was chosen to accomplish this task. For a
given pixel, the values of that pixel in all filtered images are
summed to create a single value for that pixel. The value
is then compared to a threshold, with values less than the
threshold set to 0 and values greater than it left alone. The
resulting image is then normalized to be in the range 0 to
255.

4 Results
The compass operator was applied to the left image in Figure
8 to ensure that it was working properly. The result, shown
on the right of the figure, indicates that the compass operator
successfully locates ideal edges. A compass of radius 10 was
used, along with a granularity of 4. As is clear in the result
image, an edge of very high magnitude was found along the
diagonal of the image, corresponding with the edge in the
original image. The edge direction was also found to be

	�� � ^
all along the edge, which is correct.

After testing the correctness of the compass operator, its
robustness was explored. The compass operator was applied
to images containing a single edge subject to varying degrees
of noise. The results are shown in Figure 9. The images in

7

Figure 8: Left: Image used to test the compass operator.
Right: The result of filtering the image at left with the com-
pass operator. The brightness of a pixel represents the mag-
nitude of the edge found at that point. An

� �
distance metric

was used to compare histograms.

the top row contain noise percentages of
	 �"� ,

��� � ,
�S� ,%"� � and � �S� , from left to right. The bottom row shows the

results after filtering with the compass operator. Even when
the image is � �S� noise, the compass does a reasonable job
of finding the edge.

The system was tested on real images with varying re-
sults. Figure 10 shows the result of running the compass
on an image of natural texture with a sharp edge. The origi-
nal image is shown, followed by the edge magnitude results
using the

�Y�
, histogram intersection and dynamic time warp-

ing methods, from left to right. It is apparent from the image
that the

� �
distance metric produced highly erroneous re-

sults. The histogram intersection performed slightly better,
but the dynamic time warping technique clearly presented
the best results.

Figure 11 shows the results of running the system on
more complex natural images. The images were prefiltered
with Laws’ filters. Dynamic time warping was used as the
distance metric for all images, along with a granularity of
4 and a compass radius of 10. Each column (a)-(d) has the
following format: the top image is the original; the middle
image is the results of filtering and edge detection, without
thresholding; the bottom image is the result of edge detection
with a threshold of 2400.

5 Conclusion and Future Work
There are several important results that are evident from this
research. First and most significant, the choice of distance
metric can make a profound difference in the success of the
compass operator. Though the compass results were initially
promising based on synthetic images, the effects of a naive
choice in distance metric led to disappointing edge images.
However, when the same system was used with dynamic
time warping as the distance metric, good results were ob-
tained.

Since the distance metric used to compare histograms ap-
pears to have a profound affect on the results of this system,
a more comprehensive search for the ideal metric would be

useful. Methods such as Earth movers distance or clustering
might be even more successful than dynamic time warping
and are worth exploring.

Another improvement upon the current system would be
to filter all of the preprocessed images together. Instead
of calculating edges in each image and then combining the
results, an 0 -dimensional compass filter could be applied,
where 0 is the number of filtered images produced by prepro-
cessing. The result would be two 0 -dimensional histograms,
one for each compass half. The two histograms could then
be compared using Earth movers distance or vector quanti-
zation. This would produce a more unified view of an im-
age region than individual processing can provide. Also, a
more meaningful preprocessing filter technique could be em-
ployed.

Another necessary improvement to the system is the de-
termination of a reasonable threshold to separate edges from
non-edges in the result image. Since filter size is likely to
have a large effect on the magnitude of edges in the image, it
may be necessary to write a routine that adapts the threshold
value to the current filter value. Other options include au-
tomatic threshold detection techniques and thresholding ac-
cording to mean and deviation.

Finally, the edges detected in the image should be reduced
to lines of pixel width to make them clearer. This could
be accomplished most easily by performing a hough trans-
form with non-maximal suppression. However, other meth-
ods such as skeletonization or line thinning may be more
suitable since most natural edges are not linear.

Since the results in Figure 11 appear to be promising,
this report will be submitted for publication once the edge
detection has been improved and a more extensive test image
set has been explored.

6 Acknowledgements
I would like to thank Dr. Bruce Maxwell of Swarthmore Col-
lege for his patience, good advice, and thoughtful criticisms.
I am also greatly indebted to Meg Spencer of Cornell Library
at Swarthmore College for her assistance in searching for the
resources to write this thesis, as well as the Department of
the Army and the City Library of New York for sending me
some much-needed articles through Interlibrary Loan. Fi-
nally, I would like the thank Dr. Kenneth Laws for taking the
time to discuss the strengths and limitations of his texture
measures with me through a series of e-mail conversations.

References
[1] K.I.Laws. “Texture Energy Measures.” In DARPA Im-

age Understanding Workshop, p. 47-51, 1979.

[2] R.M. Haralick, K. Shanmugam, and I. Dinstein. “Tex-
tural Features for Image Classification.” In IEEE Trans-
actions on Systems, Man and Cybernetics, vol. SMC-3,
6:610-621, Nov. 1973.

8

[3] C.C. Gotlieb and H.E. Kreyszig. “Texture Descriptors
Based on Co-occurrence Matrices.” In Computer Vi-
sion, Graphics and Image Processing, vol. 51, 1:70-86,
1990.

[4] K.R. Castleman. Digital Image Processing, Englewood
Cliffs, N.J.: Prentice Hall, 1996.

[5] M. Sonka, V. Hlavac and R. Boyle. Image Processing,
Analysis, and Machine Vision, Pacific Grove, CA: PWS
Publishing, 1999.

[6] J. MacQueen. “Some Methods for Classification and
Analysis of Multivariate Observations.” In Proceed-
ings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, 281-297, 1967.

[7] J. Shi and J. Malik. “Normalized Cuts and Image Seg-
mentation.” In IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 22, 8:888-905, 2000.

[8] M.A. Ruzon and C. Tomasi. “Color Edge Detec-
tion with the Compass Operator.” In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, vol. 2, 160-166, June 1999.

[9] L.R.R. Rabiner and B.H. Juang. Fundamentals of
Speech Recognition, Englewood Cliffs, NJ: Prentice
Hall, 1993.

9

Figure 3: Each row shows the original image followed by the results of k-means clustering. The top row was processed with
2 clusters, while the bottom rowed used three clusters. (a) Original images. (b) Images processed with cooccurrence matrices
and k-means clustering. (c) Images processed with Laws’ filters and k-means clustering.

Figure 5: A compass of radius 30 with granularity 5. The dark gray pixels are one half, the light gray pixels are the other
half, and the black pixels are those that are omitted for a preprocessing filter of radius 5.

10

Figure 9: Top: Images of an edge prepared with noise percentages of
	 �"� ,

�"� � ,
�S� ,

%�� � and ���"� .
Bottom: Results after filtering the images above with a compass operator of radius 10. The brightness of a pixel represents
the normalized magnitude of the edge found at that pixel. An

�-�
distance metric was used to compare histograms.

Figure 10: Results of running the compass operator on a natural image using difference distance metrics. The edge magnitude
threshold was set to 0 so that all edge magnitudes would be visible for comparison. (a) The original image. (b) The filtered
image using an

� �
norm. (c) The filtered image using histogram intersection. (d) The filtered image using dynamic time

warping.

11

Figure 11: Results of running the system on more complex images. Each column (a)-(d) has the following format: the top
image is the original; the middle image is the results of filtering and edge detection, without thresholding; the bottom image
is the result of edge detection with a threshold of 2400.

12

Appendix 1: Compass Operator System
Code

13

